skip to main content

Title: Diurnal Forcing and Phase Locking of Gravity Waves in the Maritime Continent
An unfiltered zonal Hovmöller depiction of rainfall in the Maritime Continent (MC) reveals remarkable spatiotemporal continuity of zonally propagating disturbances with a diurnal period, which endure over multiple days and propagate faster than the individual convective storms they coupled with. This phenomenon and its sensitivity to the Madden–Julian oscillation (MJO) during the 2011/12 Dynamics of the MJO (DYNAMO) field campaign is examined here through a well-validated, convection-permitting model simulation conducted on a large domain. We find that these disturbances are zonally propagating diurnal gravity waves excited by vigorous nocturnal mesoscale convective systems over Sumatra and Borneo. These gravity waves are diurnally phase locked: their wavelength very closely matches the distance between these two islands (~1500 km), while their particular zonal phase speed (~±17 m s −1 ) allows them to propagate this distance in one diurnal cycle. We therefore hypothesize that these waves are amplified by resonant interaction due to diurnal phase locking. While these zonal gravity waves decouple from convection once beyond the MC, their divergent flow signature endures well across the Indian Ocean, provoking the notion that they may influence rainfall at far remote locations. The exact controls over this zonal phase speed remain uncertain; we note, however, that it is roughly consistent with diurnal offshore-propagating modes documented previously. Further study is required to tie this down, and more generally, to understand the sensitivity of these modes to background flow strength and the geography of the MC.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Page Range / eLocation ID:
2815 to 2835
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Long-lived, zonally propagating diurnal rainfall disturbances are a highly pronounced and common feature in the Maritime Continent (MC). A recent study argues that these disturbances can be explained as diurnally phase-locked gravity waves. Here we explore the origins of these waves through regional cloud-permitting numerical model experiments. The gravity waves are reproduced and isolated in the model framework through the combined use of realistic geography and diurnally cyclic lateral boundary conditions representative of both characteristic easterly and westerly background zonal flow regimes. These flow regimes are characteristic of the Madden–Julian oscillation (MJO) suppressed and active phase in the MC, respectively. Tests are conducted wherein Borneo, Sumatra, or both islands and/or their orography are removed. These tests imply that the diurnal gravity waves are excited and maintained directly by latent heating from the vigorous mesoscale convective systems (MCSs) that form nocturnally in both Borneo and Sumatra. Removing orography has only a secondary impact on both the MCSs and the gravity waves, implying that it is not critical to these waves. We therefore hypothesize that diurnal gravity waves are fundamentally driven by mesoscale organized deep convection, and are only sensitive to orography to the measure that the convection is affected by the orography and its mesoscale flows. Factor separation further reveals that the nonlinear interaction of synchronized diurnal cycles in Sumatra and Borneo slightly amplifies this gravity wave mode compared to if either island existed in isolation. This nonlinear feedback appears most prominently at longitudes directly between the two islands. 
    more » « less
  2. Abstract

    Banded convective activity that occurred near the south coast of China on 30 January 2018 was investigated through convection‐allowing simulations using a nonhydrostatic mesoscale model. The simulations capture reasonably well the observed characteristics of this event. The convective bands are found to be closely related to an episode of mesoscale gravity waves propagating northeastward with a wave speed of around 12 m/s and a primary wavelength of about ~40–50 km. Further analyses and sensitivity experiments reveal that the environment provides a wave duct for these gravity waves, with a thick low‐level stable layer below 850 hPa capped by a low‐stability reflecting layer with a critical level. The strength and depth of the low‐level stable layer determine the intrinsic phase speed and wavelength of the ducted gravity waves. In the sensitivity tests that the stable layer depth is reduced, the wave characteristics change according to what are predicted with the wave duct theory. The convective bands collocate and propagate in phase with the peak updraft regions of the gravity waves, suggesting strong interactions of convection and gravity waves, in which the ducted gravity waves can trigger and modulate convection, while latent heating from convection enhances the waves. In essence, both wave ducting and wave‐convection interaction are jointly responsible for the banded convective activity.

    more » « less
  3. Abstract

    Over the past two decades mounting evidence demonstrated that terrestrial weather significantly influences the dynamics and mean state of the thermosphere. While important progress has been made in understanding how this coupling occurs on hourly to daily time scales, large uncertainty still exists on this effect around intraseasonal (∼30–90 days) time scales. In this work, analyses of Thermosphere Ionosphere Mesosphere Energetics Dynamics‐Sounding of the Atmosphere using Broadband Emission Radiometry temperatures near 110 km and Gravity field and steady‐state Ocean Circulation Explorer cross‐track winds near 260 km reveal prominent intraseasonal oscillations in the equatorial (±15°) zonal mean lower and middle thermosphere. Similar intraseasonal oscillations are found in the amplitudes of the diurnal eastward propagating tide with Zonal Wavenumber 3 (DE3) and the quasi‐3‐day ultrafast Kelvin wave, two prominent ultrafast tropical waves (UFTWs) excited by deep tropical tropospheric convection. Numerical simulations from the Specified‐Dynamics Whole Atmosphere Community Climate Model eXtended demonstrate a significant connection between these UFTW and the Madden‐Julian Oscillation (MJO). Compared to the boreal winter mean state, thermospheric UFTW amplitudes are larger (+5 to +12%) during MJO Phases 2–3 and smaller (−3% to −12%) during MJO Phases 6–8. Significant variations are also found with respect to the phase of the mesospheric semiannual oscillation (MSAO) and stratospheric quasi‐biannual oscillation (SQBO), with larger (±12–16%) thermospheric amplitudes during westward MSAO/SQBO phase and smaller (±3–6%) amplitudes during eastward MSAO/SQBO phase, in accordance with theoretical interpretations. This study suggests that UFTW may play a large role in coupling tropospheric intraseasonal variability to the thermosphere, raising important questions including implications for the whole atmosphere system.

    more » « less
  4. Abstract

    Convectively coupled waves (CCWs) over the Western Hemisphere are classified based on their governing thermodynamics. It is found that only the tropical depressions (TDs; TD waves) satisfy the criteria necessary to be considered a moisture mode, as in the Rossby-like wave found in an earlier study. In this wave, water vapor fluctuations play a much greater role in the thermodynamics than temperature fluctuations. Only in the eastward-propagating inertio-gravity (EIG) wave does temperature govern the thermodynamics. Temperature and moisture play comparable roles in all the other waves, including the Madden–Julian oscillation over the Western Hemisphere (MJO-W). The moist static energy (MSE) budget of CCWs is investigated by analyzing ERA5 data and data from the 2014/15 observations and modeling of the Green Ocean Amazon (GoAmazon 2014/15) field campaign. Results reveal that vertical advection of MSE acts as a primary driver of the propagation of column MSE in westward inertio-gravity (WIG) wave, Kelvin wave, and MJO-W, while horizontal advection plays a central role in the mixed Rossby gravity (MRG) and TD wave. Results also suggest that cloud radiative heating and the horizontal MSE advection govern the maintenance of most of the CCWs. Major disagreements are found between ERA5 and GoAmazon. In GoAmazon, convection is more tightly coupled to variations in column MSE, and vertical MSE advection plays a more prominent role in the MSE tendency. These results along with substantial budget residuals found in ERA5 data suggest that CCWs over the tropical Western Hemisphere are not represented adequately in the reanalysis.

    Significance Statement

    In comparison to other regions of the globe, the weather systems that affect precipitation in the tropical Western Hemisphere have received little attention. In this study, we investigate the structure, propagation, and thermodynamics of convectively coupled waves that impact precipitation in this region. We found that slowly evolving tropical systems are “moisture modes,” i.e., moving regions of high humidity and precipitation that are maintained by interactions between clouds and radiation. The faster waves are systems that exhibit relatively larger fluctuations in temperature. Vertical motions are more important for the movement of rainfall in these waves. Last, we found that reanalysis and observations disagree over the importance of different processes in the waves that occurred over the Amazon region, hinting at potential deficiencies on how the reanalysis represents clouds in this region.

    more » « less
  5. Abstract

    Atmospheric gravity waves (AGWs) are low-frequency, buoyancy-driven waves that are generated by turbulent convection and propagate obliquely throughout the solar atmosphere. Their proposed energy contribution to the lower solar atmosphere and sensitivity to atmospheric parameters (e.g., magnetic fields and radiative damping) highlight their diagnostic potential. We investigate AGWs near a quiet-Sun disk center region using multiwavelength data from the Interferometric Bidimensional Spectrometer and the Solar Dynamics Observatory. These observations showcase the complex wave behavior present in the entire acoustic-gravity wave spectrum. Using Fourier spectral analysis and local helioseismology techniques on simultaneously observed line core Doppler velocity and intensity fluctuations, we study both the vertical and horizontal properties of AGWs. Propagating AGWs with perpendicular group and phase velocities are detected at the expected temporal and spatial scales throughout the lower solar atmosphere. We also find previously unobserved, varied phase difference distributions among our velocity and intensity diagnostic combinations. Time–distance analysis indicates that AGWs travel with an average group speed of 4.5 km s−1, which is only partially described by a simple simulation, suggesting that high-frequency AGWs dominate the signal. Analysis of the median magnetic field (4.2 G) suggests that propagating AGWs are not significantly affected by quiet-Sun photospheric magnetic fields. Our results illustrate the importance of multiheight observations and the necessity of future work to properly characterize this observed behavior.

    more » « less