An unfiltered zonal Hovmöller depiction of rainfall in the Maritime Continent (MC) reveals remarkable spatiotemporal continuity of zonally propagating disturbances with a diurnal period, which endure over multiple days and propagate faster than the individual convective storms they coupled with. This phenomenon and its sensitivity to the Madden–Julian oscillation (MJO) during the 2011/12 Dynamics of the MJO (DYNAMO) field campaign is examined here through a well-validated, convection-permitting model simulation conducted on a large domain. We find that these disturbances are zonally propagating diurnal gravity waves excited by vigorous nocturnal mesoscale convective systems over Sumatra and Borneo. These gravity waves are diurnally phase locked: their wavelength very closely matches the distance between these two islands (~1500 km), while their particular zonal phase speed (~±17 m s −1 ) allows them to propagate this distance in one diurnal cycle. We therefore hypothesize that these waves are amplified by resonant interaction due to diurnal phase locking. While these zonal gravity waves decouple from convection once beyond the MC, their divergent flow signature endures well across the Indian Ocean, provoking the notion that they may influence rainfall at far remote locations. The exact controls over this zonal phase speed remain uncertain; we note, however, that it is roughly consistent with diurnal offshore-propagating modes documented previously. Further study is required to tie this down, and more generally, to understand the sensitivity of these modes to background flow strength and the geography of the MC.
more »
« less
Convectively Forced Diurnal Gravity Waves in the Maritime Continent
Long-lived, zonally propagating diurnal rainfall disturbances are a highly pronounced and common feature in the Maritime Continent (MC). A recent study argues that these disturbances can be explained as diurnally phase-locked gravity waves. Here we explore the origins of these waves through regional cloud-permitting numerical model experiments. The gravity waves are reproduced and isolated in the model framework through the combined use of realistic geography and diurnally cyclic lateral boundary conditions representative of both characteristic easterly and westerly background zonal flow regimes. These flow regimes are characteristic of the Madden–Julian oscillation (MJO) suppressed and active phase in the MC, respectively. Tests are conducted wherein Borneo, Sumatra, or both islands and/or their orography are removed. These tests imply that the diurnal gravity waves are excited and maintained directly by latent heating from the vigorous mesoscale convective systems (MCSs) that form nocturnally in both Borneo and Sumatra. Removing orography has only a secondary impact on both the MCSs and the gravity waves, implying that it is not critical to these waves. We therefore hypothesize that diurnal gravity waves are fundamentally driven by mesoscale organized deep convection, and are only sensitive to orography to the measure that the convection is affected by the orography and its mesoscale flows. Factor separation further reveals that the nonlinear interaction of synchronized diurnal cycles in Sumatra and Borneo slightly amplifies this gravity wave mode compared to if either island existed in isolation. This nonlinear feedback appears most prominently at longitudes directly between the two islands.
more »
« less
- Award ID(s):
- 1712290
- PAR ID:
- 10158502
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 77
- Issue:
- 3
- ISSN:
- 0022-4928
- Page Range / eLocation ID:
- 1119 to 1136
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The hypothesis that the islands of the Maritime Continent (MC) enhance total rainfall and time‐mean upward motion is tested using a convection‐permitting regional model. Sensitivity experiments with the islands removed greatly diminish both rainfall and upward motion, supporting the hypothesis. We examine the individual factors in this enhancement, isolating the impacts of the diurnal cycle from those of basic‐state (i.e., constant) forcing of orography and the land surface. We find that the basic‐state forcing by land is the only factor that substantially enhances total island rainfall, specifically through the enhancement of mean surface heat fluxes. The diurnal cycle and orographic forcing, however, substantially enhance rainfall in the seas surrounding the islands. Moreover, the diurnal cycle is found to be essential for promoting mesoscale circulations on the spatial scales of the islands, which are critical to both the upscale growth of deep convection and the most extreme rainfall rates.more » « less
-
Abstract The impact of the environmental background wind on the diurnal cycle near tropical islands is examined in observations and an idealized model. Luzon Island in the northern Philippines is used as an observational test case. Composite diurnal cycles of CMORPH precipitation are constructed based on an index derived from the first empirical orthogonal function (EOF) of ERA5 zonal wind profiles. A strong precipitation diurnal cycle and pronounced offshore propagation in the leeward direction tends to occur on days with a weak, offshore prevailing wind. Strong background winds, particularly in the onshore direction, are associated with a suppressed diurnal cycle. Idealized high resolution 2-D Cloud Model 1 (CM1) simulations test the dependence of the diurnal cycle on environmental wind speed and direction by nudging the model base-state toward composite profiles derived from the reanalysis zonal wind index. These simulations can qualitatively replicate the observed development, strength, and offshore propagation of diurnally generated convection under varying wind regimes. Under strong background winds, the land-sea contrast is reduced, which leads to a substantial reduction in the strength of the sea-breeze circulation and precipitation diurnal cycle. Weak offshore prevailing winds favor a strong diurnal cycle and offshore leeward propagation, with the direction of propagation highly sensitive to the background wind in the lower free troposphere. Offshore propagation speed appears consistent with density current theory rather than a direct coupling to a single gravity wave mode, though gravity waves may contribute to a destabilization of the offshore environment.more » « less
-
Abstract Banded convective activity that occurred near the south coast of China on 30 January 2018 was investigated through convection‐allowing simulations using a nonhydrostatic mesoscale model. The simulations capture reasonably well the observed characteristics of this event. The convective bands are found to be closely related to an episode of mesoscale gravity waves propagating northeastward with a wave speed of around 12 m/s and a primary wavelength of about ~40–50 km. Further analyses and sensitivity experiments reveal that the environment provides a wave duct for these gravity waves, with a thick low‐level stable layer below 850 hPa capped by a low‐stability reflecting layer with a critical level. The strength and depth of the low‐level stable layer determine the intrinsic phase speed and wavelength of the ducted gravity waves. In the sensitivity tests that the stable layer depth is reduced, the wave characteristics change according to what are predicted with the wave duct theory. The convective bands collocate and propagate in phase with the peak updraft regions of the gravity waves, suggesting strong interactions of convection and gravity waves, in which the ducted gravity waves can trigger and modulate convection, while latent heating from convection enhances the waves. In essence, both wave ducting and wave‐convection interaction are jointly responsible for the banded convective activity.more » « less
-
Abstract Climatological features of the cloud variability on quasi‐2‐day (Q2D) and diurnal cycle (DC) timescales are investigated by utilizing the high‐resolution satellite infrared brightness temperature (IRBT) observations from January 1998 to December 2019. A distinct land‐sea contrast between the distributions of Q2D and DC signals is evident. Diurnally driven cloud activity mainly occurs over land and mountainous regions, and the Q2D timescale is more prominent over tropical ocean basins and land where organized convection is usually observed, for example, Congo and Amazon Rainforests, the United States and subtropical South America during warm seasons. The long‐term relationship between the Q2D variability and sea surface temperature (SST) shows that the clouds are more active on Q2D timescales over higher SST environments. The Q2D variability correlates well with both the Indian Ocean Dipole (IOD) and El Niño/Southern Oscillation (ENSO) from 1998 to 2019. The cloud variability associated with a range of convective available potential energy (CAPE) values is analyzed. The result over land shows that increased Q2D cloud variability emerges with higher CAPE, suggesting the coincidence of Q2D and organized convection, particularly given that this effect is strongest over regions with frequent mesoscale convective systems (MCSs) around the world. The cloud variability and the Q2D timescale analyses provide an alternative perspective to understand the global features of mesoscale convective systems. Overall, this study objectively examines the global variability of convective timescales related to the diurnal cycle and longer‐lived convective systems to provide a greater understanding of how the global convection population varies in space and time.more » « less
An official website of the United States government

