Title: Refined Permian−Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems
The collapse of late Permian (Lopingian) Gondwanan floras, characterized by the extinction of glossopterid gymnosperms, heralded the end of one of the most enduring and extensive biomes in Earth’s history. The Sydney Basin, Australia, hosts a near-continuous, age-constrained succession of high southern paleolatitude (∼65−75°S) terrestrial strata spanning the end-Permian extinction (EPE) interval. Sedimentological, stable carbon isotopic, palynological, and macrofloral data were collected from two cored coal-exploration wells and correlated. Six palynostratigraphic zones, supported by ordination analyses, were identified within the uppermost Permian to Lower Triassic succession, corresponding to discrete vegetation stages before, during, and after the EPE interval. Collapse of the glossopterid biome marked the onset of the terrestrial EPE and may have significantly predated the marine mass extinctions and conodont-defined Permian−Triassic Boundary. Apart from extinction of the dominant Permian plant taxa, the EPE was characterized by a reduction in primary productivity, and the immediate aftermath was marked by high abundances of opportunistic fungi, algae, and ferns. This transition is coeval with the onset of a gradual global decrease in δ13Corg and the primary extrusive phase of Siberian Traps Large Igneous Province magmatism. The dominant gymnosperm groups of the Gondwanan Mesozoic (peltasperms, conifers, and corystosperms) all appeared soon after the collapse but remained rare throughout the immediate post-EPE succession. Faltering recovery was due to a succession of rapid and severe climatic stressors until at least the late Early Triassic. Immediately prior to the Smithian−Spathian boundary (ca. 249 Ma), indices of increased weathering, thick redbeds, and abundant pleuromeian lycophytes likely signify marked climate change and intensification of the Gondwanan monsoon climate system. This is the first record of the Smithian−Spathian floral overturn event in high southern latitudes. more »« less
Rapid climate change was a major contributor to the end-Permian extinction (EPE). Although well constrained for the marine realm, relatively few records document the pace, nature, and magnitude of climate change across the EPE in terrestrial environments. We generated proxy records for chemical weathering and land surface temperature from continental margin deposits of the high-latitude southeastern margin of Gondwana. Regional climate simulations provide additional context. Results show that Glossopteris forest-mire ecosystems collapsed during a pulse of intense chemical weathering and peak warmth, which capped ~1 m.y. of gradual warming and intensification of seasonality. Erosion resulting from loss of vegetation was short lived in the low-relief landscape. Earliest Triassic climate was ~10–14 °C warmer than the late Lopingian and landscapes were no longer persistently wet. Aridification, commonly linked to the EPE, developed gradually, facilitating the persistence of refugia for moisture-loving terrestrial groups.
Gulbranson, Erik L.; Sheldon, Nathan D.; Montañez, Isabel P.; Tabor, Neil J.; McIntosh, Julia A.
(, Palaeogeography, Palaeoclimatology, Palaeoecology)
Paleosols represent fossil records of paleolandscape processes, paleobiotic interactions with the land surface, and paleoclimate. Paleosol-based reconstructions have figured prominently in the study of significant changes in global climate and terrestrial life, with one of the more highly studied examples being the end-Permian extinction (EPE). The EPE was once thought to consist of synchronous extinctions in the marine realm and the terrestrial realm, with the latter displaying a lower magnitude extinction of vertebrate, insect, and plant life. However, emerging stratigraphic records, anchored by high-precision U–Pb ages, and compilations of fossil taxa indicate that the terrestrial realm on Gondwana experienced an asynchronous extinction record with the marine realm; and, at the global-scale, possibly the lack of a true mass extinction for plant and vertebrate communities. Moreover, paleosol-based interpretations of the EPE on Gondwana typically focus on one depositional basin and extrapolate those finding to assess the potential for global paleoenvironmental/paleoclimatic change. This review compiles observations of paleosols, sedimentology, stratigraphy, and geochemical data across Gondwana during the Late Permian in order to critically assess these interpretations of global change in the lead up to the EPE.
Tabor, Neil J.; Geissman, John; Renne, Paul R.; Mundil, Roland; Mitchell, William S.; Myers, Timothy S.; Jackson, Jacob; Looy, Cindy V.; Kirchholtes, Renske P.
(, Frontiers in Earth Science)
The Whitehorse Group and Quartermaster Formation are extensive red-bed terrestrial sequences representing the final episode of sedimentation in the Palo Duro Basin in north-central Texas, U.S.A. Regionally, these strata record the culmination of a long-term regression sequence beginning in the middle to late Permian. The Whitehorse Group includes beds of abundant laminated to massive red quartz siltstone to fine sandstone and rare dolomite, laminated to massive gypsum, and claystones, as well as diagenetic gypsum. The Quartermaster Formation exhibits a change from nearly equal amounts of thin planar and lenticular fine sandstone and laminated to massive mudstone in its lower half to overlying strata with coarser-grained, cross-bedded sandstones indicative of meandering channels up to 7 m deep and rare overbank mudstones. Paleosols are absent in the Upper Whitehorse Group and only poorly developed in the Quartermaster Formation. Volcanic ash-fall deposits (tuffs) present in uppermost Whitehorse Group and lower Quartermaster Formation strata permit correlation among five stratigraphic sections distributed over ∼150 km and provide geochronologic age information for these rocks. Both the Whitehorse Group and Quartermaster Formation have traditionally been assigned to the late Permian Ochoan (Changhsingian) stage, and workers assumed that the Permian-Triassic boundary is characterized by a regionally significant unconformity. Chemostratigraphic or biostratigraphic evidence for this age assignment, however, have been lacking to date. Single zircon U-Pb CA-TIMS analyses from at least two distinct volcanic ash fall layers in the lower Quartermaster Formation, which were identified and collected from five different localities across the Palo Duro Basin, yield interpreted depositional ages ranging from 252.19 ± 0.30 to 251.74 ± 0.28 Ma. Single zircon U-Pb CA-TIMS analyses of detrital zircons from sandstones located only a few meters beneath the top of the Quartermaster Formation yield a range of dates from Mesoproterozoic (1418 Ma) to Middle Triassic (244.5 Ma; Anisian), the latter of which is interpreted as a maximum depositional age, which is no older than Anisian, thus indicating the Permian-Triassic boundary to lie somewhere within the lower Quartermaster Formation/upper Whitehorse Group succession. Stable carbon isotope data from 180 samples of early-burial dolomicrite cements preserve a chemostratigraphic signal that is similar among sections, with a large ∼−8‰ negative isotope excursion ∼20 m beneath the Whitehorse Group-Quartermaster Formation boundary. This large negative carbon isotope excursion is interpreted to be the same excursion associated with the end-Permian extinction and this is in concert with the new high precision radioisotopic age data presented and the fact that the excursion lies within a normal polarity stratigraphic magnetozone. Dolomite cement δ 13 C values remain less negative (between about −5 and −8 permil) into the lower part of the Quartermaster Formation before becoming more positive toward the top of the section. This long interval of negative δ 13 C values in the Quartermaster Formation is interpreted to represent the earliest Triassic (Induan) inception of biotic and ecosystem “recovery.” Oxygen isotope values of dolomicrite cements show a progressive trend toward more positive values through the boundary interval, suggesting substantially warmer conditions around the end-Permian extinction event and a trend toward cooler conditions after the earliest Triassic. Our observations on these strata show that the paleoenvironment and paleoclimate across the Permian-Triassic boundary in western, sub-equatorial Pangea was characterized by depositional systems that were not conducive to plant preservation.
Rigo, M; Onoue, T; Tanner, L; Lucas, S; Godfrey, L; Katz, M; Zaffani, M; Grice, K; Cesar, J; Yamashita, D; et al
(, American Geophysical Union Annual Conference)
The latest Triassic was an interval of prolonged biotic extinction culminated by the end-Triassic Extinction, which is associated with a pronounced perturbation of the global carbon cycle that can be connected to extensive volcanism of the Central Atlantic Magmatic Province (CAMP). Earlier chaotic perturbations of the global carbon cycle can also be tied to the onset of declining latest Triassic diversity, which reached its maximum across the Norian-Rhaetian boundary (NRB). These perturbations are global across the Panthalassa Ocean to both sides of the Pangean supercontinent in both the Northern and Southern Hemispheres. The NRB witnessed the severe global extinctions of significant marine fossil groups, such as ammonoids, bivalves, conodonts and radiolarians. The onset of the stepwise Late Triassic extinctions coincided with the NRB carbon perturbation (d13Corg), indicating that the combined climate and environmental changes impacted the global biota. The trigger of this event is attributed to a volcanic event pre-dating the NRB, an alternative source of volcanogenic gas emissions, and/or a meteorite impact.
Benca, Jeffrey P.; Duijnstee, Ivo A.; Looy, Cindy V.
(, Science Advances)
Although Siberian Trap volcanism is considered a primary driver of the largest extinction in Earth history, the end-Permian crisis, the relationship between these events remains unclear. However, malformations in fossilized gymnosperm pollen from the extinction interval suggest biological stress coinciding with pulsed forest decline. These grains are hypothesized to have been caused by enhanced ultraviolet-B (UV-B) irradiation from volcanism-induced ozone shield deterioration. We tested this proposed mechanism by observing the effects of inferred end-Permian UV-B regimes on pollen development and reproductive success in living conifers. We find that pollen malformation frequencies increase fivefold under high UV-B intensities. Surprisingly, all trees survived but were sterilized under enhanced UV-B. These results support the hypothesis that heightened UV-B stress could have contributed not only to pollen malformation production but also to deforestation during Permian-Triassic crisis intervals. By reducing the fertility of several widespread gymnosperm lineages, pulsed ozone shield weakening could have induced repeated terrestrial biosphere destabilization and food web collapse without exerting a direct “kill” mechanism on land plants or animals. These findings challenge the paradigm that mass extinctions require kill mechanisms and suggest that modern conifer forests may be considerably more vulnerable to anthropogenic ozone layer depletion than expected.
Mays, Chris, Vajda, Vivi, Frank, Tracy D., Fielding, Christopher R., Nicoll, Robert S., Tevyaw, Allen P., and McLoughlin, Stephen. Refined Permian−Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. Retrieved from https://par.nsf.gov/biblio/10158563. GSA Bulletin . Web. doi:10.1130/B35355.1.
Mays, Chris, Vajda, Vivi, Frank, Tracy D., Fielding, Christopher R., Nicoll, Robert S., Tevyaw, Allen P., & McLoughlin, Stephen. Refined Permian−Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bulletin, (). Retrieved from https://par.nsf.gov/biblio/10158563. https://doi.org/10.1130/B35355.1
Mays, Chris, Vajda, Vivi, Frank, Tracy D., Fielding, Christopher R., Nicoll, Robert S., Tevyaw, Allen P., and McLoughlin, Stephen.
"Refined Permian−Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems". GSA Bulletin (). Country unknown/Code not available. https://doi.org/10.1130/B35355.1.https://par.nsf.gov/biblio/10158563.
@article{osti_10158563,
place = {Country unknown/Code not available},
title = {Refined Permian−Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems},
url = {https://par.nsf.gov/biblio/10158563},
DOI = {10.1130/B35355.1},
abstractNote = {The collapse of late Permian (Lopingian) Gondwanan floras, characterized by the extinction of glossopterid gymnosperms, heralded the end of one of the most enduring and extensive biomes in Earth’s history. The Sydney Basin, Australia, hosts a near-continuous, age-constrained succession of high southern paleolatitude (∼65−75°S) terrestrial strata spanning the end-Permian extinction (EPE) interval. Sedimentological, stable carbon isotopic, palynological, and macrofloral data were collected from two cored coal-exploration wells and correlated. Six palynostratigraphic zones, supported by ordination analyses, were identified within the uppermost Permian to Lower Triassic succession, corresponding to discrete vegetation stages before, during, and after the EPE interval. Collapse of the glossopterid biome marked the onset of the terrestrial EPE and may have significantly predated the marine mass extinctions and conodont-defined Permian−Triassic Boundary. Apart from extinction of the dominant Permian plant taxa, the EPE was characterized by a reduction in primary productivity, and the immediate aftermath was marked by high abundances of opportunistic fungi, algae, and ferns. This transition is coeval with the onset of a gradual global decrease in δ13Corg and the primary extrusive phase of Siberian Traps Large Igneous Province magmatism. The dominant gymnosperm groups of the Gondwanan Mesozoic (peltasperms, conifers, and corystosperms) all appeared soon after the collapse but remained rare throughout the immediate post-EPE succession. Faltering recovery was due to a succession of rapid and severe climatic stressors until at least the late Early Triassic. Immediately prior to the Smithian−Spathian boundary (ca. 249 Ma), indices of increased weathering, thick redbeds, and abundant pleuromeian lycophytes likely signify marked climate change and intensification of the Gondwanan monsoon climate system. This is the first record of the Smithian−Spathian floral overturn event in high southern latitudes.},
journal = {GSA Bulletin},
author = {Mays, Chris and Vajda, Vivi and Frank, Tracy D. and Fielding, Christopher R. and Nicoll, Robert S. and Tevyaw, Allen P. and McLoughlin, Stephen},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.