skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-Q dark hyperbolic phonon-polaritons in hexagonal boron nitride nanostructures
Abstract The anisotropy of hexagonal boron nitride (hBN) gives rise to hyperbolic phonon-polaritons (HPhPs), notable for their volumetric frequency-dependent propagation and strong confinement. For frustum (truncated nanocone) structures, theory predicts five, high-order HPhPs, sets, but only one set was observed previously with far-field reflectance and scattering-type scanning near-field optical microscopy. In contrast, the photothermal induced resonance (PTIR) technique has recently permitted sampling of the full HPhP dispersion and observing such elusive predicted modes; however, the mechanism underlying PTIR sensitivity to these weakly-scattering modes, while critical to their understanding, has not yet been clarified. Here, by comparing conventional contact- and newly developed tapping-mode PTIR, we show that the PTIR sensitivity to those weakly-scattering, high-Q (up to ≈280) modes is, contrary to a previous hypothesis, unrelated to the probe operation (contact or tapping) and is instead linked to PTIR ability to detect tip-launched dark, volumetrically-confined polaritons, rather than nanostructure-launched HPhPs modes observed by other techniques. Furthermore, we show that in contrast with plasmons and surface phonon-polaritons, whose Q -factors and optical cross-sections are typically degraded by the proximity of other nanostructures, the high- Q HPhP resonances are preserved even in high-density hBN frustum arrays, which is useful in sensing and quantum emission applications.  more » « less
Award ID(s):
1904793
PAR ID:
10158649
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanophotonics
Volume:
0
Issue:
0
ISSN:
2192-8606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hyperbolic phonon polaritons (HPhPs) enable strong confinements, low losses, and intrinsic beam steering capabilities determined by the refractive index anisotropy—providing opportunities from hyperlensing to flat optics and other applications. Here, two scanning-probe techniques, photothermal induced resonance (PTIR) and scattering-type scanning near-field optical microscopy (s-SNOM), are used to map infrared (6.4–7.4 µm) HPhPs in large (up to 120 × 250 µm2) near-monoisotopic (>99% 10B) hexagonal boron nitride (hBN) flakes. Wide (≈40 µm) PTIR and s-SNOM scans on such large flakes avoid interference from polaritons launched from different asperities (edges, folds, surface defects, etc.) and together with Fourier analyses (0.05 µm−1 resolution) enable precise measurements of HPhP lifetimes (up to ≈4.2 ps) and propagation lengths (up to ≈25 and ≈17 µm for the first- and second-order branches, respectively). With respect to naturally abundant hBN, we report an eightfold improved, record-high (for hBN) propagating figure of merit (i.e., with both high confinement and long lifetime) in ≈99% 10B hBN, achieving, finally, theoretically predicted values. We show that wide near-field scans critically enable accurate estimates of the polaritons’ lifetimes and propagation lengths and that the incidence angle of light, with respect to both the sample plane and the flake edge, needs to be considered to extract correctly the dispersion relation from the near-field polaritons maps. Overall, the measurements and data analyses employed here elucidate details pertaining to polaritons’ propagation in isotopically enriched hBN and pave the way for developing high-performance HPhP-based devices. 
    more » « less
  2. Polar van der Waals (vdW) crystals, composed of atomic layers held together by vdW forces, can host phonon polaritons—quasiparticles arising from the interaction between photons in free-space light and lattice vibrations in polar materials. These crystals offer advantages such as easy fabrication, low Ohmic loss, and optical confinement. Recently, hexagonal boron nitride (hBN), known for having hyperbolicity in the mid-infrared range, has been used to explore multiple modes with high optical confinement. This opens possibilities for practical polaritonic nanodevices with subdiffractional resolution. However, polariton waves still face exposure to the surrounding environment, leading to significant energy losses. In this work, we propose a simple approach to inducing a hyperbolic phonon polariton (HPhP) waveguide in hBN by incorporating a low dielectric medium, ZrS2. The low dielectric medium serves a dual purpose—it acts as a pathway for polariton propagation, while inducing high optical confinement. We establish the criteria for the HPhP waveguide in vdW heterostructures with various thicknesses of ZrS2 through scattering-type scanning near-field optical microscopy (s-SNOM) and by conducting numerical electromagnetic simulations. Our work presents a feasible and straightforward method for developing practical nanophotonic devices with low optical loss and high confinement, with potential applications such as energy transfer, nano-optical integrated circuits, light trapping, etc. 
    more » « less
  3. Abstract Hyperbolic phonon polaritons (HPhPs) are stimulated by coupling infrared (IR) photons with the polar lattice vibrations. Such HPhPs offer low‐loss, highly confined light propagation at subwavelength scales with out‐of‐plane or in‐plane hyperbolic wavefronts. For HPhPs, while a hyperbolic dispersion implies multiple propagating modes with a distribution of wavevectors at a given frequency, so far it has been challenging to experimentally launch and probe the higher‐order modes that offer stronger wavelength compression, especially for in‐plane HPhPs. In this work, the experimental observation of higher‐order in‐plane HPhP modes stimulated on a 3C‐SiC nanowire (NW)/α‐MoO3heterostructure is reported where leveraging both the low‐dimensionality and low‐loss nature of the polar NWs, higher‐order HPhPs modes within 2D α‐MoO3crystal are launched by the 1D 3C‐SiC NW. The launching mechanism is further studied and the requirements for efficiently launching of such higher‐order modes are determined. In addition, by altering the geometric orientation between the 3C‐SiC NW and α‐MoO3crystal, the manipulation of higher‐order HPhP dispersions as a method of tuning is demonstrated. This work illustrates an extremely anisotropic low dimensional heterostructure platform to confine and configure electromagnetic waves at the deep‐subwavelength scales for a range of IR applications including sensing, nano‐imaging, and on‐chip photonics. 
    more » « less
  4. Abstract Silicon waveguides have enabled large‐scale manipulation and processing of near‐infrared optical signals on chip. Yet, expanding the bandwidth of guided waves to other frequencies will further increase the functionality of silicon as a photonics platform. Frequency multiplexing by integrating additional architectures is one approach to the problem, but this is challenging to design and integrate within the existing form factor due to scaling with the free‐space wavelength. This paper demonstrates that a hexagonal boron nitride (hBN)/silicon hybrid waveguide can simultaneously enable dual‐band operation at both mid‐infrared (6.5–7.0 µm) and telecom (1.55 µm) frequencies, respectively. The device is realized via the lithography‐free transfer of hBN onto a silicon waveguide, maintaining near‐infrared operation. In addition, mid‐infrared waveguiding of the hyperbolic phonon polaritons (HPhPs) supported in hBN is induced by the index contrast between the silicon waveguide and the surrounding air underneath the hBN, thereby eliminating the need for deleterious etching of the hyperbolic medium. The behavior of HPhP waveguiding in both straight and curved trajectories is validated within an analytical waveguide theoretical framework. This exemplifies a generalizable approach based on integrating hyperbolic media with silicon photonics for realizing frequency multiplexing in on‐chip photonic systems. 
    more » « less
  5. Abstract Polaritons in two-dimensional materials provide extreme light confinement that is difficult to achieve with metal plasmonics. However, such tight confinement inevitably increases optical losses through various damping channels. Here we demonstrate that hyperbolic phonon polaritons in hexagonal boron nitride can overcome this fundamental trade-off. Among two observed polariton modes, featuring a symmetric and antisymmetric charge distribution, the latter exhibits lower optical losses and tighter polariton confinement. Far-field excitation and detection of this high-momenta mode become possible with our resonator design that can boost the coupling efficiency via virtual polariton modes with image charges that we dub ‘image polaritons’. Using these image polaritons, we experimentally observe a record-high effective index of up to 132 and quality factors as high as 501. Further, our phenomenological theory suggests an important role of hyperbolic surface scattering in the damping process of hyperbolic phonon polaritons. 
    more » « less