skip to main content


Title: Infrared Permittivity of the Biaxial van der Waals Semiconductor α‐MoO 3 from Near‐ and Far‐Field Correlative Studies
Abstract

The biaxial van der Waals semiconductor α‐phase molybdenum trioxide (α‐MoO3) has recently received significant attention due to its ability to support highly anisotropic phonon polaritons (PhPs)—infrared (IR) light coupled to lattice vibrations—offering an unprecedented platform for controlling the flow of energy at the nanoscale. However, to fully exploit the extraordinary IR response of this material, an accurate dielectric function is required. Here, the accurate IR dielectric function of α‐MoO3is reported by modeling far‐field polarized IR reflectance spectra acquired on a single thick flake of this material. Unique to this work, the far‐field model is refined by contrasting the experimental dispersion and damping of PhPs, revealed by polariton interferometry using scattering‐type scanning near‐field optical microscopy (s‐SNOM) on thin flakes of α‐MoO3, with analytical and transfer‐matrix calculations, as well as full‐wave simulations. Through these correlative efforts, exceptional quantitative agreement is attained to both far‐ and near‐field properties for multiple flakes, thus providing strong verification of the accuracy of this model, while offering a novel approach to extracting dielectric functions of nanomaterials. In addition, by employing density functional theory (DFT), insights into the various vibrational states dictating the dielectric function model and the intriguing optical properties of α‐MoO3are provided.

 
more » « less
Award ID(s):
1904793
NSF-PAR ID:
10377101
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
29
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In recent years, the excitation of surface phonon polaritons (SPhPs) in van der Waals materials received wide attention from the nanophotonics community. Alpha-phase Molybdenum trioxide (α-MoO3), a naturally occurring biaxial hyperbolic crystal, emerged as a promising polaritonic material due to its ability to support SPhPs for three orthogonal directions at different wavelength bands (range 10–20μm). Here, we report on the fabrication, structural, morphological, and optical IR characterization of large-area (over 1 cm2size)α-MoO3polycrystalline film deposited on fused silica substrates by pulsed laser deposition. Due to the random grain distribution, the thin film does not display any optical anisotropy at normal incidence. However, the proposed fabrication method allows us to achieve a singleα-phase, preserving the typical strong dispersion related to the phononic response ofα-MoO3flakes. Remarkable spectral properties of interest for IR photonics applications are reported. For instance, a polarization-tunable reflection peak at 1006 cm−1with a dynamic range of ΔR= 0.3 and a resonanceQ-factor as high as 53 is observed at 45° angle of incidence. Additionally, we report the fulfillment of an impedance matching condition with the SiO2substrate leading to a polarization-independent almost perfect absorption condition (R< 0.01) at 972 cm−1which is maintained for a broad angle of incidence. In this framework our findings appear extremely promising for the further development of mid-IR lithography-free, scalable films, for efficient and large-scale sensors, filters, thermal emitters, and label-free biochemical sensing devices operating in the free space, using far-field detection setups.

     
    more » « less
  2. Abstract

    The far‐infrared (far‐IR) remains a relatively underexplored region of the electromagnetic spectrum extending roughly from 20 to 100 µm in free‐space wavelength. Research within this range has been restricted due to a lack of optical materials that can be optimized to reduce losses and increase sensitivity, as well as by the long free‐space wavelengths associated with this spectral region. Here the exceptionally broad Reststrahlen bands of two Hf‐based transition metal dichalcogenides (TMDs) that can support surface phonon polaritons (SPhPs) within the mid‐infrared (mid‐IR) into the terahertz (THz) are reported. In this vein, the IR transmission and reflectance spectra of hafnium disulfide (HfS2) and hafnium diselenide (HfSe2) flakes are measured and their corresponding dielectric functions are extracted. These exceptionally broad Reststrahlen bands (HfS2: 165 cm−1; HfSe2: 95 cm−1) dramatically exceed that of the more commonly explored molybdenum‐ (Mo) and tungsten‐ (W) based TMDs (≈5–10 cm−1), which results from the over sevenfold increase in the Born effective charge of the Hf‐containing compounds. This work therefore identifies a class of materials for nanophotonic and sensing applications in the mid‐ to far‐IR, such as deeply sub‐diffractional hyperbolic and polaritonic optical antennas, as is predicted via electromagnetic simulations using the extracted dielectric function.

     
    more » « less
  3. Abstract

    Structural anisotropy in crystals is crucial for controlling light propagation, particularly in the infrared spectral regime where optical frequencies overlap with crystalline lattice resonances, enabling light-matter coupled quasiparticles called phonon polaritons (PhPs). Exploring PhPs in anisotropic materials like hBN and MoO3has led to advancements in light confinement and manipulation. In a recent study, PhPs in the monoclinic crystal β-Ga2O3(bGO) were shown to exhibit strongly asymmetric propagation with a frequency dispersive optical axis. Here, using scanning near-field optical microscopy (s-SNOM), we directly image the symmetry-broken propagation of hyperbolic shear polaritons in bGO. Further, we demonstrate the control and enhancement of shear-induced propagation asymmetry by varying the incident laser orientation and polariton momentum using different sizes of nano-antennas. Finally, we observe significant rotation of the hyperbola axis by changing the frequency of incident light. Our findings lay the groundwork for the widespread utilization and implementation of polaritons in low-symmetry crystals.

     
    more » « less
  4. Abstract

    Exploiting polaritons in natural vdW materials has been successful in achieving extreme light confinement and low-loss optical devices and enabling simplified device integration. Recently, α-MoO3has been reported as a semiconducting biaxial vdW material capable of sustaining naturally orthogonal in-plane phonon polariton modes in IR. In this study, we investigate the polarization-dependent optical characteristics of cavities formed using α-MoO3to extend the degrees of freedom in the design of IR photonic components exploiting the in-plane anisotropy of this material. Polarization-dependent absorption over 80% in a multilayer Fabry-Perot structure with α-MoO3is reported without the need for nanoscale fabrication on the α-MoO3. We observe coupling between the α-MoO3optical phonons and the Fabry-Perot cavity resonances. Using cross-polarized reflectance spectroscopy we show that the strong birefringence results in 15% of the total power converted into the orthogonal polarization with respect to incident wave. These findings can open new avenues in the quest for polarization filters and low-loss, integrated planar IR photonics and in dictating polarization control.

     
    more » « less
  5. Abstract

    Low‐symmetry van der Waals materials are promising candidates for the next generation of polarization‐sensitive on‐chip photonics since they do not require lattice matching for growth and integration. Due to their low‐symmetry crystal behavior, such materials exhibit anisotropic and polarization‐dependent optical properties for a wide range of optical frequencies. Here, depolarization characteristics of orthorhombic α‐MoO3is studied in the visible range. Using polarizers and analyzers, it is demonstrated that α‐MoO3has negligible loss and that birefringence values as high as 0.15 and 0.12 at 532 nm and 633 nm, respectively, are achievable. With such a high birefringence, quarter‐ and half‐wave plate actions are demonstrated for a 1400 nm α‐MoO3flake at green (532 nm) and red (633 nm) wavelengths, and polarizability as high as 90% is reported. Furthermore, a system of double α‐MoO3heterostructure layer is investigated that provides the possibility of tuning polarization as a function of rotation angle between the α‐MoO3layers. These findings pave the way to the promising future of on‐chip photonic heterostructures and twist‐optics that can dictate the polarization state of light.

     
    more » « less