skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tuning of Optical Phonons in α-MoO3–VO2 Multilayers
Merging the properties of VO2 and van der Waals (vdW) materials has given rise to novel tunable photonic devices. Despite recent studies on the effect of the phase change of VO2 on tuning near-field optical response of phonon polaritons in the infrared range, active tuning of optical phonons (OPhs) using far-field techniques has been scarce. Here, we investigate the tunability of OPhs of α-MoO3 in a multilayer structure with VO2. Our experiments show the frequency and intensity tuning of 2 cm–1 and 11% for OPhs in the [100] direction and 2 cm–1 and 28% for OPhs in the [010] crystal direction of α-MoO3. Using the effective medium theory and dielectric models of each layer, we verify these findings with simulations. We then use loss tangent analysis and remove the effect of the substrate to understand the origin of these spectral characteristics. We expect that these findings will assist in intelligently designing tunable photonic devices for infrared applications, such as tunable camouflage and radiative cooling devices.  more » « less
Award ID(s):
1953803
PAR ID:
10329503
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
ACS applied materials interfaces
Volume:
13
Issue:
41
ISSN:
1944-8252
Page Range / eLocation ID:
48981-48987
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Widely tunable coherent sources are desirable in nanophotonics for a multitude of applications ranging from communications to sensing. The mid-infrared spectral region (wavelengths beyond 2 μm) is particularly important for applications relying on molecular spectroscopy. Among tunable sources, optical parametric oscillators typically offer some of the broadest tuning ranges; however, their implementations in nanophotonics have been limited to narrow tuning ranges in the infrared or to visible wavelengths. Here, we surpass these limits in dispersion-engineered periodically poled lithium niobate nanophotonics and demonstrate ultrawidely tunable optical parametric oscillators. Using 100 ns pulses near 1 μm, we generate output wavelengths tunable from 1.53 μm to 3.25 μm in a single chip with output powers as high as tens of milliwatts. Our results represent the first octave-spanning tunable source in nanophotonics extending into the mid-infrared, which can be useful for numerous integrated photonic applications. 
    more » « less
  2. The increasing demand for optical technologies with dynamic spectral control has driven interest in chromogenic materials, particularly for applications in tunable infrared metasurfaces. Phase-change materials such as vanadium dioxide and germanium–antimony–tellurium, for instance, have been widely used in the infrared regime. However, their reliance on thermal and electrical tuning introduces challenges such as high power consumption, limited emissivity tuning, and slow modulation speeds. Photochromic materials may offer an alternative approach to dynamic infrared metasurfaces, potentially overcoming these limitations through rapid, light-induced changes in their optical properties. This manuscript explores the potential of thiazolothiazole-embedded polymers, known for their reversible photochromic transitions and strong infrared absorption changes, for use in tunable infrared metasurfaces. The material exhibits low absorption and a strong photochromic contrast in the spectral range from 1500 cm−1 to 1700 cm−1, making it suitable for dynamic infrared light control. This manuscript reports on infrared imaging experiments demonstrating the photochromic contrast in thiazolothiazole-embedded polymer, and thereby provides compelling evidence for its potential applications in dynamic infrared metasurfaces. 
    more » « less
  3. Plasmonic metasurfaces with adjustable optical responses can be achieved through phase change materials (PCMs) with high optical contrast. However, the on–off behavior of the phase change process results in the binary response of photonic devices, limiting the applications to the two-stage modulation. In this work, we propose a reconfigurable metasurface emitter based on a gold nanorod array on a VO2 thin film for achieving continuously tunable narrowband thermal emission. The electrode line connecting the center of each nanorod not only enables emission excitation electrically but also activates the phase transition of VO2 beneath the array layer due to Joule heating. The change in the dielectric environment due to the VO2 phase transition results in the modulation of emissivity from the plasmonic metasurfaces. The device performances regarding critical geometrical parameters are analyzed based on a fully coupled electro-thermo-optical finite element model. This new metasurface structure extends the binary nature of PCM based modulations to continuous reconfigurability and provides new possibilities toward smart metasurface emitters, reflectors, and other nanophotonic devices. 
    more » « less
  4. Charge transfer is a fundamental interface process that can be harnessed for light detection, photovoltaics, and photosynthesis. Recently, charge transfer was exploited in nanophotonics to alter plasmon polaritons by involving additional non-polaritonic materials to activate the charge transfer. Yet, direct charge transfer between polaritonic materials has not been demonstrated. We report the direct charge transfer in pure polaritonic van der Waals (vdW) heterostructures of α-MoO3/graphene. We extracted the Fermi energy of 0.6 eV for graphene by infrared nano-imaging of charge transfer hyperbolic polaritons in the vdW heterostructure. This unusually high Fermi energy is attributed to the charge transfer between graphene and α-MoO3. Moreover, we have observed charge transfer hyperbolic polaritons in multiple energy–momentum dispersion branches with a wavelength elongation of up to 150%. With the support from the density functional theory calculation, we find that the charge transfer between graphene and α-MoO3, absent in mechanically assembled vdW heterostructures, is attributed to the relatively pristine heterointerface preserved in the epitaxially grown vdW heterostructure. The direct charge transfer and charge transfer hyperbolic polaritons demonstrated in our work hold great promise for developing nano-optical circuits, computational devices, communication systems, and light and energy manipulation devices. 
    more » « less
  5. Abstract In recent years, the excitation of surface phonon polaritons (SPhPs) in van der Waals materials received wide attention from the nanophotonics community. Alpha-phase Molybdenum trioxide (α-MoO3), a naturally occurring biaxial hyperbolic crystal, emerged as a promising polaritonic material due to its ability to support SPhPs for three orthogonal directions at different wavelength bands (range 10–20μm). Here, we report on the fabrication, structural, morphological, and optical IR characterization of large-area (over 1 cm2size)α-MoO3polycrystalline film deposited on fused silica substrates by pulsed laser deposition. Due to the random grain distribution, the thin film does not display any optical anisotropy at normal incidence. However, the proposed fabrication method allows us to achieve a singleα-phase, preserving the typical strong dispersion related to the phononic response ofα-MoO3flakes. Remarkable spectral properties of interest for IR photonics applications are reported. For instance, a polarization-tunable reflection peak at 1006 cm−1with a dynamic range of ΔR= 0.3 and a resonanceQ-factor as high as 53 is observed at 45° angle of incidence. Additionally, we report the fulfillment of an impedance matching condition with the SiO2substrate leading to a polarization-independent almost perfect absorption condition (R< 0.01) at 972 cm−1which is maintained for a broad angle of incidence. In this framework our findings appear extremely promising for the further development of mid-IR lithography-free, scalable films, for efficient and large-scale sensors, filters, thermal emitters, and label-free biochemical sensing devices operating in the free space, using far-field detection setups. 
    more » « less