skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A perturbation approach to understanding the effects of turbulence on frontogenesis
Ocean fronts are an important submesoscale feature, yet frontogenesis theory often neglects turbulence – even parameterized turbulence – leaving theory lacking in comparison with observations and models. A perturbation analysis is used to include the effects of eddy viscosity and diffusivity as a first-order correction to existing strain-induced inviscid, adiabatic frontogenesis theory. A modified solution is obtained by using potential vorticity and surface conditions to quantify turbulent fluxes. It is found that horizontal viscosity and diffusivity tend to be readily frontolytic – reducing frontal tendency to negative values under weakly non-conservative perturbations and opposing or reversing front sharpening, whereas vertical viscosity and diffusivity tend to only weaken frontogenesis by slowing the rate of sharpening of the front even under strong perturbations. During late frontogenesis, vertical diffusivity enhances the rate of frontogenesis, although perturbation theory may be inaccurate at this stage. Surface quasi-geostrophic theory – neglecting all injected interior potential vorticity – is able to describe the first-order correction to the along-front velocity and ageostrophic overturning circulation in most cases. Furthermore, local conditions near the front maximum are sufficient to reconstruct the modified solution of both these fields.  more » « less
Award ID(s):
1655221
PAR ID:
10158775
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
883
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A high-resolution fourth-order Padé scheme is used to simulate locally isothermal 3D disk turbulence driven by the vertical shear instability (VSI) using 268.4 M points. In the early nonlinear period of axisymmetric VSI, angular momentum transport by vertical jets creates correlatedN-shaped radial profiles of perturbation vertical and azimuthal velocity. This implies dominance of positive perturbation vertical vorticity layers and a recently discovered angular momentum staircase with respect to radius (r). These features are present in 3D in a weaker form. The 3D flow consists of vertically and azimuthally coherent turbulent shear layers containing small vortices with all three vorticity components active. Previously observed large persistent vortices in the interior of the domain driven by the Rossby wave instability are absent. We speculate that this is due to a weaker angular momentum staircase in 3D in the present simulations compared to a previous simulation. The turbulent viscosity parameterα(r) increases linearly withr. At intermediate resolution, the value ofα(r) at midradius is close to that of a previous simulation. The specific kinetic energy spectrum with respect to radial wavenumber has a power-law region with exponent −1.84, close to the value −2 expected for shear layers. The spectrum with respect to azimuthal wavenumber has a −5/3 region and lacks a −5 region reported in an earlier study. Finally, it is found that axisymmetric VSI has artifacts at late times, including a very strong angular momentum staircase, which in 3D is present weakly in the disk’s upper layers. 
    more » « less
  2. Abstract This study analyzes observations collected by multilevel towers to estimate turbulence parameters in the atmospheric surface layer of two landfalling tropical cyclones (TCs). The momentum flux, turbulent kinetic energy (TKE) and dissipation rate increase with the wind speed independent of surface types. However, the momentum flux and TKE are much larger over land than over the coastal ocean at a given wind speed range. The vertical eddy diffusivity is directly estimated using the momentum flux and strain rate, which more quickly increases with the wind speed over a rougher surface. Comparisons of the eddy diffusivity estimated using the direct flux method and that using the friction velocity and height show good agreement. On the other hand, the traditional TKE method overestimates the eddy diffusivity compared to the direct flux method. The scaling coefficients in the TKE method are derived for the two different surface types to better match with the vertical eddy diffusivity based on the direct flux method. Some guidance to improve vertical diffusion parameterizations for TC landfall forecasts in weather simulations are also provided. 
    more » « less
  3. In nutrient-limited conditions, phytoplankton growth at fronts is enhanced by winds, which drive upward nutrient fluxes via enhanced turbulent mixing and upwelling. Hence, depth-integrated phytoplankton biomass can be 10 times greater at isolated fronts. Using theory and two-dimensional simulations with a coupled physical-biogeochemical ocean model, this paper builds conceptual understanding of the physical processes driving upward nutrient fluxes at fronts forced by unsteady winds with timescales of 4–16 days. The largest vertical nutrient fluxes occur when the surface mixing layer penetrates the nutricline, which fuels phytoplankton in the mixed layer. At a front, mixed layer deepening depends on the magnitude and direction of the wind stress, cross-front variations in buoyancy and velocity at the surface, and potential vorticity at the base of the mixed layer, which itself depends on past wind events. Consequently, mixing layers are deeper and more intermittent in time at fronts than outside fronts. Moreover, mixing can decouple in time from the wind stress, even without other sources of physical variability. Wind-driven upwelling also enhances depth-integrated phytoplankton biomass at fronts; when the mixed layer remains shallower than the nutricline, this results in enhanced subsurface phytoplankton. Oscillatory along-front winds induce both oscillatory and mean upwelling. The mean effect of oscillatory vertical motion is to transiently increase subsurface phytoplankton over days to weeks, whereas slower mean upwelling sustains this increase over weeks to months. Taken together, these results emphasize that wind-driven phytoplankton growth is both spatially and temporally intermittent and depends on a diverse combination of physical processes. 
    more » « less
  4. null (Ed.)
    Abstract Observation system simulation experiments are used to evaluate different dual-Doppler analysis (DDA) methods for retrieving vertical velocity w at grid spacings on the order of 100 m within a simulated tornadic supercell. Variational approaches with and without a vertical vorticity equation constraint are tested, along with a typical (traditional) method involving vertical integration of the mass conservation equation. The analyses employ emulated radar data from dual-Doppler placements 15, 30, and 45 km east of the mesocyclone, with volume scan intervals ranging from 10 to 150 s. The effect of near-surface data loss is examined by denying observations below 1 km in some of the analyses. At the longer radar ranges and when no data denial is imposed, the “traditional” method produces results similar to those of the variational method and is much less expensive to implement. However, at close range and/or with data denial, the variational method is much more accurate, confirming results from previous studies. The vorticity constraint shows the potential to improve the variational analysis substantially, reducing errors in the w retrieval by up to 30% for rapid-scan observations (≤30 s) at close range when the local vorticity tendency is estimated using spatially variable advection correction. However, the vorticity constraint also degrades the analysis for longer scan intervals, and the impact diminishes with increased range. Furthermore, analyses using 30-s data also frequently outperform analyses using 10-s data, suggesting a limit to the benefit of increasing the radar scan rate for variational DDA employing the vorticity constraint. 
    more » « less
  5. The stirring and mixing of heat and momentum in the ocean surface boundary layer (OSBL) are dominated by 1 to 10 km fluid flows – too small to be resolved in global and regional ocean models. Instead, these processes are parametrized. Two main parametrizations include vertical mixing by surface-forced metre-scale turbulence and overturning by kilometre-scale submesoscale frontal flows and instabilities. In present models, these distinct parametrizations are implemented in tandem, yet ignore meaningful interactions between these two scales that may influence net turbulent fluxes. Using a large-eddy simulation of frontal spin down resolving processes at both scales, this work diagnoses submesoscale and surface-forced turbulence impacts that are the foundation of OSBL parametrizations, following a traditional understanding of these flows. It is shown that frontal circulations act to suppress the vertical buoyancy flux by surface forced turbulence, and that this suppression is not represented by traditional boundary layer turbulence theory. A main result of this work is that current OSBL parametrizations excessively mix buoyancy and overestimate turbulence dissipation rates in the presence of lateral flows. These interactions have a direct influence on the upper ocean potential vorticity and energy budgets with implications for global upper ocean budgets and circulation. 
    more » « less