Observations from a tidal estuary show that tidal intrusion fronts occur regularly during flood tides near topographic features including constrictions and bends. A realistic model is used to study the generation of these fronts and their influence on stratification and mixing in the estuary. At the constriction, flow separation occurs on both sides of the jet flow downstream of the narrow opening, leading to sharp lateral salinity gradients and baroclinic secondary circulation. A tidal intrusion front, with a V-shaped convergence zone on the surface, is generated by the interaction between secondary circulation and the jet flow. Stratification is created at the front due to the straining of lateral salinity gradients by secondary circulation. Though stratification is expected to suppress turbulence, strong turbulent mixing is found near the surface front. The intense mixing is attributed to enhanced vertical shear due to both frontal baroclinicity and the twisting of lateral shear by secondary circulation. In the bend, flow separation occurs along the inner bank, resulting in lateral salinity gradients, secondary circulation, frontogenesis, and enhanced mixing near the front. In contrast to the V-shaped front at the constriction, an oblique linear surface convergence front occurs in the bend, which resembles a one-sided tidal intrusion front. Moreover, in addition to baroclinicity, channel curvature also affects secondary circulation, frontogenesis, and mixing in the bend. Overall in the estuary, the near-surface mixing associated with tidal intrusion fronts during flood tides is similar in magnitude to bottom boundary layer mixing that occurs primarily during ebbs.
- Award ID(s):
- 1655221
- PAR ID:
- 10158775
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 883
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Fronts and near-inertial waves (NIWs) are energetic motions in the upper ocean that have been shown to interact and provide a route for kinetic energy (KE) dissipation of balanced oceanic flows. In this paper, we study these KE exchanges using an idealized model consisting of a two-dimensional geostrophically balanced front undergoing strain-induced semigeostrophic frontogenesis and internal wave (IW) vertical modes. The front–IW KE exchanges are quantified separately during two frontogenetic stages: an exponential sharpening stage that is characterized by a low Rossby number and is driven by the imposed strain (i.e., mesoscale frontogenesis), followed by a superexponential sharpening stage that is characterized by an
Rossby number and is driven by the convergence of the secondary circulation (i.e., submesoscale frontogenesis). It is demonstrated that high-frequency IWs quickly escape the frontal zone and are very efficient at extracting KE from the imposed geostrophic strain field through the deformation shear production (DSP). Part of the extracted KE is then converted to wave potential energy. On the contrary, NIWs remain locked to the frontal zone and readily exchange energy with the ageostrophic frontal circulation. During the exponential stage, NIWs extract KE from the geostrophic strain through DSP and transfer it to the frontal secondary circulation via the ageostrophic shear production (AGSP) mechanism. During the superexponential stage, a newly identified mechanism, convergence production (CP), plays an important role in the NIW KE budget. The CP transfers KE from the convergent ageostrophic secondary circulation to the NIWs and largely cancels out the KE loss due to the AGSP. This CP may explain previous findings of KE transfer enhancement from balanced motions to IWs in frontal regions of realistic ocean models. We provide analytical estimates for the aforementioned energy exchange mechanisms that match well the numerical results. This highlights that the strength of the exchanges strongly depends on the frontal Rossby and Richardson numbers. Significance Statement Fronts with large horizontal density and velocity gradients are ubiquitous in the upper ocean. They are generated by a process known as frontogenesis, which is often initialized by straining motions of mesoscale balanced circulations. Here we examine the energy exchanges between fronts and internal waves in an idealized configuration, aiming to elucidate the mechanisms that can drain energy from oceanic balanced circulations. We identify a new mechanism for energy transfers from the frontal circulation to near-inertial internal waves called convergence production. This mechanism is especially effective during the later stages of frontogenesis when the convergent ageostrophic secondary circulation that develops is strong.
-
Abstract This study analyzes observations collected by multilevel towers to estimate turbulence parameters in the atmospheric surface layer of two landfalling tropical cyclones (TCs). The momentum flux, turbulent kinetic energy (TKE) and dissipation rate increase with the wind speed independent of surface types. However, the momentum flux and TKE are much larger over land than over the coastal ocean at a given wind speed range. The vertical eddy diffusivity is directly estimated using the momentum flux and strain rate, which more quickly increases with the wind speed over a rougher surface. Comparisons of the eddy diffusivity estimated using the direct flux method and that using the friction velocity and height show good agreement. On the other hand, the traditional TKE method overestimates the eddy diffusivity compared to the direct flux method. The scaling coefficients in the TKE method are derived for the two different surface types to better match with the vertical eddy diffusivity based on the direct flux method. Some guidance to improve vertical diffusion parameterizations for TC landfall forecasts in weather simulations are also provided.
-
In nutrient-limited conditions, phytoplankton growth at fronts is enhanced by winds, which drive upward nutrient fluxes via enhanced turbulent mixing and upwelling. Hence, depth-integrated phytoplankton biomass can be 10 times greater at isolated fronts. Using theory and two-dimensional simulations with a coupled physical-biogeochemical ocean model, this paper builds conceptual understanding of the physical processes driving upward nutrient fluxes at fronts forced by unsteady winds with timescales of 4–16 days. The largest vertical nutrient fluxes occur when the surface mixing layer penetrates the nutricline, which fuels phytoplankton in the mixed layer. At a front, mixed layer deepening depends on the magnitude and direction of the wind stress, cross-front variations in buoyancy and velocity at the surface, and potential vorticity at the base of the mixed layer, which itself depends on past wind events. Consequently, mixing layers are deeper and more intermittent in time at fronts than outside fronts. Moreover, mixing can decouple in time from the wind stress, even without other sources of physical variability. Wind-driven upwelling also enhances depth-integrated phytoplankton biomass at fronts; when the mixed layer remains shallower than the nutricline, this results in enhanced subsurface phytoplankton. Oscillatory along-front winds induce both oscillatory and mean upwelling. The mean effect of oscillatory vertical motion is to transiently increase subsurface phytoplankton over days to weeks, whereas slower mean upwelling sustains this increase over weeks to months. Taken together, these results emphasize that wind-driven phytoplankton growth is both spatially and temporally intermittent and depends on a diverse combination of physical processes.more » « less
-
null (Ed.)Abstract Observation system simulation experiments are used to evaluate different dual-Doppler analysis (DDA) methods for retrieving vertical velocity w at grid spacings on the order of 100 m within a simulated tornadic supercell. Variational approaches with and without a vertical vorticity equation constraint are tested, along with a typical (traditional) method involving vertical integration of the mass conservation equation. The analyses employ emulated radar data from dual-Doppler placements 15, 30, and 45 km east of the mesocyclone, with volume scan intervals ranging from 10 to 150 s. The effect of near-surface data loss is examined by denying observations below 1 km in some of the analyses. At the longer radar ranges and when no data denial is imposed, the “traditional” method produces results similar to those of the variational method and is much less expensive to implement. However, at close range and/or with data denial, the variational method is much more accurate, confirming results from previous studies. The vorticity constraint shows the potential to improve the variational analysis substantially, reducing errors in the w retrieval by up to 30% for rapid-scan observations (≤30 s) at close range when the local vorticity tendency is estimated using spatially variable advection correction. However, the vorticity constraint also degrades the analysis for longer scan intervals, and the impact diminishes with increased range. Furthermore, analyses using 30-s data also frequently outperform analyses using 10-s data, suggesting a limit to the benefit of increasing the radar scan rate for variational DDA employing the vorticity constraint.more » « less