skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Title: A perturbation approach to understanding the effects of turbulence on frontogenesis
Ocean fronts are an important submesoscale feature, yet frontogenesis theory often neglects turbulence – even parameterized turbulence – leaving theory lacking in comparison with observations and models. A perturbation analysis is used to include the effects of eddy viscosity and diffusivity as a first-order correction to existing strain-induced inviscid, adiabatic frontogenesis theory. A modified solution is obtained by using potential vorticity and surface conditions to quantify turbulent fluxes. It is found that horizontal viscosity and diffusivity tend to be readily frontolytic – reducing frontal tendency to negative values under weakly non-conservative perturbations and opposing or reversing front sharpening, whereas vertical viscosity and diffusivity tend to only weaken frontogenesis by slowing the rate of sharpening of the front even under strong perturbations. During late frontogenesis, vertical diffusivity enhances the rate of frontogenesis, although perturbation theory may be inaccurate at this stage. Surface quasi-geostrophic theory – neglecting all injected interior potential vorticity – is able to describe the first-order correction to the along-front velocity and ageostrophic overturning circulation in most cases. Furthermore, local conditions near the front maximum are sufficient to reconstruct the modified solution of both these fields.  more » « less
Award ID(s):
1655221
NSF-PAR ID:
10158775
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
883
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fronts and near-inertial waves (NIWs) are energetic motions in the upper ocean that have been shown to interact and provide a route for kinetic energy (KE) dissipation of balanced oceanic flows. In this paper, we study these KE exchanges using an idealized model consisting of a two-dimensional geostrophically balanced front undergoing strain-induced semigeostrophic frontogenesis and internal wave (IW) vertical modes. The front–IW KE exchanges are quantified separately during two frontogenetic stages: an exponential sharpening stage that is characterized by a low Rossby number and is driven by the imposed strain (i.e., mesoscale frontogenesis), followed by a superexponential sharpening stage that is characterized by anRossby number and is driven by the convergence of the secondary circulation (i.e., submesoscale frontogenesis). It is demonstrated that high-frequency IWs quickly escape the frontal zone and are very efficient at extracting KE from the imposed geostrophic strain field through the deformation shear production (DSP). Part of the extracted KE is then converted to wave potential energy. On the contrary, NIWs remain locked to the frontal zone and readily exchange energy with the ageostrophic frontal circulation. During the exponential stage, NIWs extract KE from the geostrophic strain through DSP and transfer it to the frontal secondary circulation via the ageostrophic shear production (AGSP) mechanism. During the superexponential stage, a newly identified mechanism, convergence production (CP), plays an important role in the NIW KE budget. The CP transfers KE from the convergent ageostrophic secondary circulation to the NIWs and largely cancels out the KE loss due to the AGSP. This CP may explain previous findings of KE transfer enhancement from balanced motions to IWs in frontal regions of realistic ocean models. We provide analytical estimates for the aforementioned energy exchange mechanisms that match well the numerical results. This highlights that the strength of the exchanges strongly depends on the frontal Rossby and Richardson numbers.

    Significance Statement

    Fronts with large horizontal density and velocity gradients are ubiquitous in the upper ocean. They are generated by a process known as frontogenesis, which is often initialized by straining motions of mesoscale balanced circulations. Here we examine the energy exchanges between fronts and internal waves in an idealized configuration, aiming to elucidate the mechanisms that can drain energy from oceanic balanced circulations. We identify a new mechanism for energy transfers from the frontal circulation to near-inertial internal waves called convergence production. This mechanism is especially effective during the later stages of frontogenesis when the convergent ageostrophic secondary circulation that develops is strong.

     
    more » « less
  2. In nutrient-limited conditions, phytoplankton growth at fronts is enhanced by winds, which drive upward nutrient fluxes via enhanced turbulent mixing and upwelling. Hence, depth-integrated phytoplankton biomass can be 10 times greater at isolated fronts. Using theory and two-dimensional simulations with a coupled physical-biogeochemical ocean model, this paper builds conceptual understanding of the physical processes driving upward nutrient fluxes at fronts forced by unsteady winds with timescales of 4–16 days. The largest vertical nutrient fluxes occur when the surface mixing layer penetrates the nutricline, which fuels phytoplankton in the mixed layer. At a front, mixed layer deepening depends on the magnitude and direction of the wind stress, cross-front variations in buoyancy and velocity at the surface, and potential vorticity at the base of the mixed layer, which itself depends on past wind events. Consequently, mixing layers are deeper and more intermittent in time at fronts than outside fronts. Moreover, mixing can decouple in time from the wind stress, even without other sources of physical variability. Wind-driven upwelling also enhances depth-integrated phytoplankton biomass at fronts; when the mixed layer remains shallower than the nutricline, this results in enhanced subsurface phytoplankton. Oscillatory along-front winds induce both oscillatory and mean upwelling. The mean effect of oscillatory vertical motion is to transiently increase subsurface phytoplankton over days to weeks, whereas slower mean upwelling sustains this increase over weeks to months. Taken together, these results emphasize that wind-driven phytoplankton growth is both spatially and temporally intermittent and depends on a diverse combination of physical processes. 
    more » « less
  3. Many studies over the 1960’s reported failure in predicting accurate flutter boundaries using the classical theory of unsteady aerodynamics even at zero angle of attack and/or lift conditions. Since the flutter phenomenon lies in the intersection between unsteady aerodynamics and structural dynamics, and because the structural dynamics of slender beams can be fairly predicted, it was inferred that the problem stems from the classical theory of unsteady aerodynamics. As a result, a research flurry occurred over the 1970’s and 1980’s investigating such a theory, with particular emphasis on the applicability of the Kutta condition to unsteady flows. There was almost a consensus that the Kutta condition must to be relaxed at high frequencies and low Reynolds numbers, which was also concluded from several recent studies of the unsteady aerodynamics of bio-inspired flight. Realizing that vorticity generation and lift development are essentially viscous processes, we develop a viscous extension of the classical theory of unsteady aerodynamics, equivalently an unsteady extension of the boundary layer theory. We rely on a special boundary layer theory that pays close attention to the details in the vicinity of the trailing edge: the triple deck theory. We use such a theory to relax the Kutta condition and determine a viscous correction to the inviscid unsteady lift. Using the developed viscous unsteady model, we develop a Reynolds-number-dependent lift frequency response (i.e., a viscous extension of Theodorsen’s). It is found that viscosity induces a significant phase lag to the lift development beyond Theodorsen’s inviscid solution, particularly at high frequencies and low Reynolds numbers. Since flutter, similar to any typical hopf bifurcation, is mainly dictated by the phase difference between the applied loads and the motion, it is expected that the viscosity-induced lag will affect the flutter boundary. To assess such an effect, we couple the developed unsteady viscous aerodynamic theory with a structural dynamic model of a typical section to perform aeroelastic simulation and analysis. We compare the flutter boundary determined using the developed viscous unsteady model to that of Theodorsen’s. 
    more » « less
  4. Abstract

    The subpolar gyres of the Southern Ocean form an important dynamical link between the Antarctic Circumpolar Current (ACC) and the coastline of Antarctica. Despite their key involvement in the production and export of bottom water and the poleward transport of oceanic heat, these gyres are rarely acknowledged in conceptual models of the Southern Ocean circulation, which tend to focus on the zonally averaged overturning across the ACC. To isolate the effect of these gyres on the regional circulation, we carried out a set of numerical simulations with idealized representations of the Weddell Sea sector in the Southern Ocean. A key result is that the zonally oriented submarine ridge along the northern periphery of the subpolar gyre plays a fundamental role in setting the stratification and circulation across the entire region. In addition to sharpening and strengthening the horizontal circulation of the gyre, the zonal ridge establishes a strong meridional density front that separates the weakly stratified subpolar gyre from the more stratified circumpolar flow. Critically, the formation of this front shifts the latitudinal outcrop position of certain deep isopycnals such that they experience different buoyancy forcing at the surface. Additionally, the zonal ridge modifies the mechanisms by which heat is transported poleward by the ocean, favoring heat transport by transient eddies while suppressing that by stationary eddies. This study highlights the need to characterize how bathymetry at the subpolar gyre–ACC boundary may constrain the transient response of the regional circulation to changes in surface forcing.

    Significance Statement

    This study explores the impact of seafloor bathymetry on the dynamics of subpolar gyres in the Southern Ocean. The subpolar gyres are major circulation features that connect the Antarctic Circumpolar Current (ACC) and the coastline of Antarctica. This work provides deeper insight for how the submarine ridges that exist along the northern periphery of these gyres shape the vertical distribution of tracers and overturning circulation in these regions. These findings highlight an underappreciated yet fundamentally important topographical constraint on the three-dimensional cycling of heat and carbon in the Southern Ocean—processes that have far-reaching implications for the global climate. Future work should explore how the presence of these ridges affect the time-evolving response of the Southern Ocean to changes in surface conditions.

     
    more » « less
  5. Abstract

    Air–sea momentum and scalar fluxes are strongly influenced by the coupling dynamics between turbulent winds and a spectrum of waves. Because direct field observations are difficult, particularly in high winds, many modeling and laboratory studies have aimed to elucidate the impacts of the sea state and other surface wave features on momentum and energy fluxes between wind and waves as well as on the mean wind profile and drag coefficient. Opposing wind is common under transient winds, for example, under tropical cyclones, but few studies have examined its impacts on air–sea fluxes. In this study, we employ a large-eddy simulation for wind blowing over steep sinusoidal waves of varying phase speeds, both following and opposing wind, to investigate impacts on the mean wind profile, drag coefficient, and wave growth/decay rates. The airflow dynamics and impacts rapidly change as the wave age increases for waves following wind. However, there is a rather smooth transition from the slowest waves following wind to the fastest waves opposing wind, with gradual enhancement of a flow perturbation identified by a strong vorticity layer detached from the crest despite the absence of apparent airflow separation. The vorticity layer appears to increase the effective surface roughness and wave form drag (wave attenuation rate) substantially for faster waves opposing wind.

    Significance Statement

    Surface waves increase friction at the sea surface and modify how wind forces upper-ocean currents and turbulence. Therefore, it is important to include effects of different wave conditions in weather and climate forecasts. We aim to inform more accurate forecasts by investigating wind blowing over waves propagating in the opposite direction using large-eddy simulation. We find that when waves oppose wind, they decay as expected, but also increase the surface friction much more drastically than when waves follow wind. This finding has important implications for how waves opposing wind are represented as a source of surface friction in forecast models.

     
    more » « less