Abstract. Optimizing radar observation strategies is one of the mostimportant considerations in pre-field campaign periods. This is especiallytrue for isolated convective clouds that typically evolve faster than theobservations captured by operational radar networks. This study investigatesuncertainties in radar observations of the evolution of the microphysicaland dynamical properties of isolated deep convective clouds developing inclean and polluted environments. It aims to optimize the radar observationstrategy for deep convection through the use of high-spatiotemporalcloud-resolving model simulations, which resolve the evolution of individualconvective cells every 1 min, coupled with a radar simulator and a celltracking algorithm. The radar simulation settings are based on the TrackingAerosol Convection Interactions ExpeRiment (TRACER) and Experiment of SeaBreeze Convection, Aerosols, Precipitation and Environment (ESCAPE) fieldcampaigns held in the Houston, TX, area but are generalizable to other fieldcampaigns focusing on isolated deep convection. Our analysis produces thefollowing four outcomes. First, a 5–7 m s−1 median difference inmaximum updrafts of tracked cells is shown between the clean and pollutedsimulations in the early stages of the cloud lifetimes. This demonstratesthe importance of obtaining accurate estimates of vertical velocity fromobservations if aerosol impacts are to be properly resolved. Second,tracking of individual cells and using vertical cross section scanning every minute capture the evolution of precipitation particle number concentration and size represented by polarimetric observables better than the operational radar observations that update the volume scan every 5 min. This approach also improves multi-Doppler radar updraft retrievals above 5 km above ground level for regions with updraft velocities greater than 10 m s−1. Third, we propose an optimized strategy composed of cell tracking by quick (1–2 min) vertical cross section scans from more than oneradar in addition to the operational volume scans. We also propose the useof a single-RHI (range height indicator) updraft retrieval technique for cellsclose to the radars, for which multi-Doppler radar retrievals are stillchallenging. Finally, increasing the number of deep convective cells sampledby such observations better represents the median maximum updraft evolutionwith sample sizes of more than 10 deep cells, which decreases the errorassociated with sampling the true population to less than 3 m s−1.
more »
« less
High-Resolution, Rapid-Scan Dual-Doppler Retrievals of Vertical Velocity in a Simulated Supercell
Abstract Observation system simulation experiments are used to evaluate different dual-Doppler analysis (DDA) methods for retrieving vertical velocity w at grid spacings on the order of 100 m within a simulated tornadic supercell. Variational approaches with and without a vertical vorticity equation constraint are tested, along with a typical (traditional) method involving vertical integration of the mass conservation equation. The analyses employ emulated radar data from dual-Doppler placements 15, 30, and 45 km east of the mesocyclone, with volume scan intervals ranging from 10 to 150 s. The effect of near-surface data loss is examined by denying observations below 1 km in some of the analyses. At the longer radar ranges and when no data denial is imposed, the “traditional” method produces results similar to those of the variational method and is much less expensive to implement. However, at close range and/or with data denial, the variational method is much more accurate, confirming results from previous studies. The vorticity constraint shows the potential to improve the variational analysis substantially, reducing errors in the w retrieval by up to 30% for rapid-scan observations (≤30 s) at close range when the local vorticity tendency is estimated using spatially variable advection correction. However, the vorticity constraint also degrades the analysis for longer scan intervals, and the impact diminishes with increased range. Furthermore, analyses using 30-s data also frequently outperform analyses using 10-s data, suggesting a limit to the benefit of increasing the radar scan rate for variational DDA employing the vorticity constraint.
more »
« less
- Award ID(s):
- 1623626
- PAR ID:
- 10212197
- Date Published:
- Journal Name:
- Journal of Atmospheric and Oceanic Technology
- Volume:
- 36
- Issue:
- 8
- ISSN:
- 0739-0572
- Page Range / eLocation ID:
- 1477 to 1500
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Observations of the air vertical velocities ( w air ) in supercell updrafts are presented, including uncertainty estimates, from radiosonde GPS measurements in two supercells. These in situ observations were collected during the Colorado State University Convective Cloud Outflows and Updrafts Experiment (C 3 LOUD-Ex) in moderately unstable environments in Colorado and Wyoming. Based on the radiosonde accelerations, instances when the radiosonde balloon likely bursts within the updraft are determined, and adjustments are made to account for the subsequent reduction in radiosonde buoyancy. Before and after these adjustments, the maximum estimated w air values are 36.2 and 49.9 m s −1 , respectively. Radar data are used to contextualize the in situ observations and suggest that most of the radiosonde observations were located several kilometers away from the most intense vertical motions. Therefore, the radiosonde-based w air values presented likely underestimate the maximum values within these storms due to these sampling biases, as well as the impacts from hydrometeors, which are not accounted for. When possible, radiosonde-based w air values were compared to estimates from dual-Doppler methods and from parcel theory. When the radiosondes observed their highest w air values, dual-Doppler methods generally produced 15–20 m s −1 lower w air for the same location, which could be related to the differences in the observing systems’ resolutions. In situ observations within supercell updrafts, which have been limited in recent decades, can be used to improve our understanding and modeling of storm dynamics. This study provides new in situ observations, as well as methods and lessons that could be applied to future field campaigns.more » « less
-
Abstract Due to differences between air and debris motions, debris centrifuging creates bias in wind estimates based on Doppler velocities and radar wind retrievals in tornadoes. Anomalous radial divergence, azimuthal wind underestimation, and vertical velocity bias associated with debris centrifuging can lead to erroneous interpretations of tornado intensity and structure from radar data. A novel spectral velocity correction technique is developed to reduce bias by identifying rain and debris motion in radar signals using dual-polarization spectral density estimation and fuzzy logic classification. This technique successfully improves Doppler velocity estimates in simulated S-band polarimetric time series data, although debris concentration modulates both the magnitude and correctability of velocity bias. Large bias magnitudes associated with high debris concentrations are the most difficult to fully correct using this technique, especially at low elevation angles and near the center of the tornado. However, the magnitudes of corrections applied are proportional to the original bias magnitudes, suggesting that the technique performs consistently across low and high debris concentrations. Spectral correction results in an overall 84% reduction in bias in simulations. The spectral correction technique is also applied to dual-polarization S-band radar observations of the 20 May 2013 Moore, Oklahoma tornado. Overall increases in Doppler velocity magnitudes, especially at lower elevation angles, imply that spectral correction can successfully reduce centrifuging bias in observed Doppler velocities.more » « less
-
Abstract Dual-frequency millimeter-wavelength radar observations in snowfall are analyzed in order to evaluate differences in conventional polarimetric radar variables such as differential reflectivity ( Z DR ) specific differential phase shift ( K DP ) and linear depolarization ratio (LDR) at traditional cloud radar frequencies at Ka and W bands (~35 and ~94 GHz, correspondingly). Low radar beam elevation (~5°) measurements were performed at Oliktok Point, Alaska, with a scanning fully polarimetric radar operating in the horizontal–vertical polarization basis. This radar has the same gate spacing and very close beam widths at both frequencies, which largely alleviates uncertainties associated with spatial and temporal data matching. It is shown that observed Ka- and W-band Z DR differences are, on average, less than about 0.5 dB and do not have a pronounced trend as a function of snowfall reflectivity. The observed Z DR differences agree well with modeling results obtained using integration over nonspherical ice particle size distributions. For higher signal-to-noise ratios, K DP data derived from differential phase measurements are approximately scaled as reciprocals of corresponding radar frequencies indicating that the influence of non-Rayleigh scattering effects on this variable is rather limited. This result is also in satisfactory agreement with data obtained by modeling using realistic particle size distributions. Observed Ka- and W-band LDR differences are strongly affected by the radar hardware system polarization “leak” and are generally less than 4 dB. Smaller differences are observed for higher depolarizations, where the polarization “leak” is less pronounced. Realistic assumptions about particle canting and the system polarization isolation lead to modeling results that satisfactorily agree with observational dual-frequency LDR data.more » « less
-
Abstract The quantification of storm updrafts remains unavailable for operational forecasting despite their inherent importance to convection and its associated severe weather hazards. Updraft proxies, like overshooting top area from satellite images, have been linked to severe weather hazards but only relate to a limited portion of the total storm updraft. This study investigates if a machine learning model, namely, U-Nets, can skillfully retrieve maximum vertical velocity and its areal extent from three-dimensional gridded radar reflectivity alone. The machine learning model is trained using simulated radar reflectivity and vertical velocity from the National Severe Storm Laboratory’s convection permitting Warn-on-Forecast System (WoFS). A parametric regression technique using the sinh–arcsinh–normal distribution is adapted to run with U-Nets, allowing for both deterministic and probabilistic predictions of maximum vertical velocity. The best models after hyperparameter search provided less than 50% root mean squared error, a coefficient of determination greater than 0.65, and an intersection over union (IoU) of more than 0.45 on the independent test set composed of WoFS data. Beyond the WoFS analysis, a case study was conducted using real radar data and corresponding dual-Doppler analyses of vertical velocity within a supercell. The U-Net consistently underestimates the dual-Doppler updraft speed estimates by 50%. Meanwhile, the area of the 5 and 10 m s−1updraft cores shows an IoU of 0.25. While the above statistics are not exceptional, the machine learning model enables quick distillation of 3D radar data that is related to the maximum vertical velocity, which could be useful in assessing a storm’s severe potential. Significance StatementAll convective storm hazards (tornadoes, hail, heavy rain, straight line winds) can be related to a storm’s updraft. Yet, there is no direct measurement of updraft speed or area available for forecasters to make their warning decisions from. This paper addresses the lack of observational data by providing a machine learning solution that skillfully estimates the maximum updraft speed within storms from only the radar reflectivity 3D structure. After further vetting the machine learning solutions on additional real-world examples, the estimated storm updrafts will hopefully provide forecasters with an added tool to help diagnose a storm’s hazard potential more accurately.more » « less
An official website of the United States government

