This paper introduces a new invariant extended Kalman filter design that produces real-time state estimates and rapid error convergence for the estimation of the human body movement even in the presence of sensor misalignment and initial state estimation errors. The filter fuses the data returned by an inertial measurement unit (IMU) attached to the body (e.g., pelvis or chest) and a virtual measurement of zero stance-foot velocity (i.e., leg odometry). The key novelty of the proposed filter lies in that its process model meets the group affine property while the filter explicitly addresses the IMU placement error by formulating its stochastic process model as Brownian motions and incorporating the error in the leg odometry. Although the measurement model is imperfect (i.e., it does not possess an invariant observation form) and thus its linearization relies on the state estimate, experimental results demonstrate fast convergence of the proposed filter (within 0.2 seconds) during squatting motions even under significant IMU placement inaccuracy and initial estimation errors.
more »
« less
Contact-aided invariant extended Kalman filtering for robot state estimation
Legged robots require knowledge of pose and velocity in order to maintain stability and execute walking paths. Current solutions either rely on vision data, which is susceptible to environmental and lighting conditions, or fusion of kinematic and contact data with measurements from an inertial measurement unit (IMU). In this work, we develop a contact-aided invariant extended Kalman filter (InEKF) using the theory of Lie groups and invariant observer design. This filter combines contact-inertial dynamics with forward kinematic corrections to estimate pose and velocity along with all current contact points. We show that the error dynamics follows a log-linear autonomous differential equation with several important consequences: (a) the observable state variables can be rendered convergent with a domain of attraction that is independent of the system’s trajectory; (b) unlike the standard EKF, neither the linearized error dynamics nor the linearized observation model depend on the current state estimate, which (c) leads to improved convergence properties and (d) a local observability matrix that is consistent with the underlying nonlinear system. Furthermore, we demonstrate how to include IMU biases, add/remove contacts, and formulate both world-centric and robo-centric versions. We compare the convergence of the proposed InEKF with the commonly used quaternion-based extended Kalman filter (EKF) through both simulations and experiments on a Cassie-series bipedal robot. Filter accuracy is analyzed using motion capture, while a LiDAR mapping experiment provides a practical use case. Overall, the developed contact-aided InEKF provides better performance in comparison with the quaternion-based EKF as a result of exploiting symmetries present in system.
more »
« less
- Award ID(s):
- 1808051
- PAR ID:
- 10158784
- Date Published:
- Journal Name:
- The International Journal of Robotics Research
- Volume:
- 39
- Issue:
- 4
- ISSN:
- 0278-3649
- Page Range / eLocation ID:
- 402 to 430
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This article presents an invariant extended Kalman filter (InEKF) approach for estimating the relative pose and linear velocity of ground robots—either legged or wheeled—using an inertial measurement unit (IMU) attached to the robot, encoders, and an external IMU placed on the moving ground. The approach explicitly accounts for ground motion in noninertial environments, such as ships or airplanes, where the ground rotates or accelerates in the inertial frame. Unlike previous methods, it does not rely on known ground pose. This consideration introduces complexity due to the nonlinear dynamics and kinematics of the reference frame. Despite this complexity, the proposed filter, based on the InEKF methodology, includes a process model that partially satisfies the group affine condition. The leg odometry-based measurement model meets the right-invariant observation form for deterministic scenarios, though the wheel odometry model does not. Observability analysis demonstrates that all state variables are observable during a broad range of ground motions, overcoming the partial observability limitations of previous filters. Experiments on a Digit humanoid robot and a Jackal wheeled robot verify the filter’s effectiveness across various ground motions.more » « less
-
This work investigates the robot state estimation problem within a non-inertial environment. The proposed state estimation approach relaxes the common assumption of static ground in the system modeling. The process and measurement models explicitly treat the movement of the non-inertial environments without requiring knowledge of its motion in the inertial frame or relying on GPS or sensing environmental landmarks. Further, the proposed state estimator is formulated as an invariant extended Kalman filter (InEKF) [1] with the deterministic part of its process model obeying the groupaffine property, leading to log-linear error dynamics. The observability analysis confirms the robot’s pose (i.e., position and orientation) and velocity relative to the non-inertial environment are observable under the proposed InEKF.more » « less
-
This work presents a multiplicative extended Kalman filter (MEKF) for estimating the relative state of a multirotor vehicle operating in a GPS-denied environment. The filter fuses data from an inertial measurement unit and altimeter with relative-pose updates from a keyframe-based visual odometry or laser scan-matching algorithm. Because the global position and heading states of the vehicle are unobservable in the absence of global measurements such as GPS, the filter in this article estimates the state with respect to a local frame that is colocated with the odometry keyframe. As a result, the odometry update provides nearly direct measurements of the relative vehicle pose, making those states observable. Recent publications have rigorously documented the theoretical advantages of such an observable parameterization, including improved consistency, accuracy, and system robustness, and have demonstrated the effectiveness of such an approach during prolonged multirotor flight tests. This article complements this prior work by providing a complete, self-contained, tutorial derivation of the relative MEKF, which has been thoroughly motivated but only briefly described to date. This article presents several improvements and extensions to the filter while clearly defining all quaternion conventions and properties used, including several new useful properties relating to error quaternions and their Euler-angle decomposition. Finally, this article derives the filter both for traditional dynamics defined with respect to an inertial frame, and for robocentric dynamics defined with respect to the vehicle’s body frame, and provides insights into the subtle differences that arise between the two formulations.more » « less
-
This paper presents a method of tracking multiple ground targets from an unmanned aerial vehicle (UAV) in a 3D reference frame. The tracking method uses a monocular camera and makes no assumptions on the shape of the terrain or the target motion. The UAV runs two cascaded estimators. The first is an Extended Kalman Filter (EKF), which is responsible for tracking the UAV’s state, such as position and velocity relative to a fixed frame. The second estimator is an EKF that is responsible for estimating a fixed number of landmarks within the camera’s field of view. Landmarks are parameterized by a quaternion associated with bearing from the camera’s optical axis and an inverse distance parameter. The bearing quaternion allows for a minimal representation of each landmark’s direction and distance, a filter with no singularities, and a fast update rate due to few trigonometric functions. Three methods for estimating the ground target positions are demonstrated: the first uses the landmark estimator directly on the targets, the second computes the target depth with a weighted average of converged landmark depths, and the third extends the target’s measured bearing vector to intersect a ground plane approximated from the landmark estimates. Simulation results show that the third target estimation method yields the most accurate results.more » « less
An official website of the United States government

