The dynamic properties of liquid phase-change materials (PCMs), such as viscosity η and the atomic self-diffusion coefficient D , play an essential role in the ultrafast phase switching behavior of novel nonvolatile phase-change memory applications. To connect η to D , the Stokes-Einstein relation (SER) is commonly assumed to be valid at high temperatures near or above the melting temperature T m and is often used for assessing liquid fragility (or crystal growth velocity) of technologically important PCMs. However, using quasi-elastic neutron scattering, we provide experimental evidence for a breakdown of the SER even at temperatures above T m in the high–atomic mobility state of a PCM, Ge 1 Sb 2 Te 4 . This implies that although viscosity may have strongly increased during cooling, diffusivity can remain high owing to early decoupling, being a favorable feature for the fast phase switching behavior of the high-fluidity PCM. We discuss the origin of the observation and propose the possible connection to a metal-semiconductor and fragile-strong transition hidden below T m .
more »
« less
Phase-change materials: The view from the liquid phase and the metallicity parameter
While fast-switching rewritable nonvolatile memory units based on phase-change materials (PCMs) are already in production at major technology companies such as Intel (16–64 GB chips are currently available), an in-depth understanding of the physical factors that determine their success is still lacking. Recently, we have argued for a liquid-phase metal-to-semiconductor transition (M-SC), located not far below the melting point, T m , as essential. The M-SC is itself a consequence of atomic rearrangements that are involved in a fragile-to-strong viscosity transition that controls both the speed of crystallization and the stabilization of the semiconducting state. Here, we review past work and introduce a new parameter, the “metallicity” (inverse of the average Pauling electronegativity of a multicomponent alloy). When T m -scaled temperatures of known M-SCs of Group IV, V, and VI alloys are plotted against their metallicities, the curvilinear plot leads directly to the composition zone of all known PCMs and the temperature interval below T m , where the transition should occur. The metallicity concept could provide guidance for tailoring PCMs.
more »
« less
- Award ID(s):
- 1832817
- PAR ID:
- 10158863
- Date Published:
- Journal Name:
- MRS Bulletin
- Volume:
- 44
- Issue:
- 09
- ISSN:
- 0883-7694
- Page Range / eLocation ID:
- 691 to 698
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many phase change materials (PCMs) are found to crystallize without exhibiting a glass transition endotherm upon reheating. In this paper, we review experimental evidence revealing that these PCMs and likely other hyperquenched molecular and metallic systems can crystallize from the glassy state when reheated at a standard rate. Among these evidences, PCMs annealed below the glass transition temperature T g exhibit slower crystallization kinetics despite an increase in the number of sub-critical nuclei that should promote the crystallization speed. Flash calorimetry uncovers the glass transition endotherm hidden by crystallization and reveals a distinct change in kinetics when crystallization switches from the glassy to the supercooled liquid state. The resulting T g value also rationalizes the presence of the pre- T g relaxation exotherm ubiquitous of hyperquenched systems. Finally, the shift in crystallization temperature during annealing exhibits a non-exponential decay that is characteristic of structural relaxation in the glass. Modeling using a modified Turnbull equation for nucleation rate supports the existence of sub- T g fast crystallization and emphasizes the benefit of a fragile-to-strong transition for PCM applications due to a reduction in crystallization at low temperature (improved data retention) and increasing its speed at high temperature (faster computing).more » « less
-
This paper presents a study on the characterization of density as a function of temperature for phase change materials (PCMs). More specifically, in this study we analyze organic alkane PCMs, often called paraffins. PCMs are materials that have the ability to absorb a substantial amount of heat during phase transition from solid to liquid, and therefore prove to be useful in thermal energy storage. The density of paraffin wax PCMs is largely dependent on temperature, and during the phase change process, the density decreases dramatically as the PCM transitions from solid to liquid. Consequently, the PCM experiences dramatic volumetric expansion during this transition. Besides the thermal energy storage uses of PCMs, this volumetric expansion that they exhibit is also used in thermal actuator applications, often referred to as wax motors. While density of PCMs does affect their thermal and mechanical performance, the property is not well-characterized within the literature. In this paper, we examine ten paraffin wax PCMs with varying meltingtemperatures and characterize their densities as a function of temperature. This characterization was done usinga piston and cylinder dilatometer test setup within a temperature-controlled thermal chamber that we designedand validated to the well-characterized density properties of water. The density and temperature relationships werefurther analyzed using piecewise linear regression analysis to develop mathematical models of density as it relates totemperature, which will be useful to those wishing to analyze designs in which PCMs are used, such as in PCM-filled heat sinks.more » « less
-
Abstract Optoelectronics are crucial for developing energy‐efficient chip technology, with phase‐change materials (PCMs) emerging as promising candidates for reconfigurable components in photonic integrated circuits, such as nonvolatile phase shifters. Antimony sulfide (Sb2S3) stands out due to its low optical loss and considerable phase‐shifting properties, along with the non‐volatility of both phases. This study demonstrates that the crystallization kinetics of Sb2S3can be switched from growth‐driven to nucleation‐driven by altering the sample dimension from bulk to film. This tuning of the crystallization process is critical for optical switching applications requiring control over partial crystallization. Calorimetric measurements with heating rates spanning over six orders of magnitude, reveal that, unlike conventional PCMs that crystallize below the glass transition, Sb2S3exhibits a measurable glass transition prior to crystallization from the undercooled liquid (UCL) phase. The investigation of isothermal crystallization kinetics provides insights into nucleation rates and crystal growth velocities while confirming the shift to nucleation‐driven behavior at reduced film thicknesses—an essential aspect for effective device engineering. A fundamental difference in chemical bonding mechanisms was identified between Sb2S3, which exhibits covalent bonding in both material phases, and other PCMs, such as GeTe and Ge2Sb2Te5, which demonstrate pronounced bonding alterations upon crystallization.more » « less
-
Owing to their ability for fast switching and the large property contrast between the crystalline and amorphous states that permits multi-level data storage, in-memory computing and neuromorphic computing, the investigation of phase change materials (PCMs) remains a highly active field of research. Yet, the continuous increase in electrical resistance (called drift) observed in the amorphous phase has so far hindered the commercial implementation of multi-level data storage. It was recently shown that the resistance drift is caused by aging-induced structural relaxation of the glassy phase, which is accompanied by a simultaneous decrease in enthalpy and fictive temperature. This implies that resistance is related to enthalpy relaxation. While the resistance is known to drift even at room temperature and below, evidence for enthalpy relaxation at room temperature in amorphous PCMs is still missing. Here, we monitor changes in enthalpy induced by long-term room-temperature aging in a series of PCMs. Our results demonstrate the simultaneity of resistance drift and enthalpy relaxation at room temperature, and thus provide further insights into the mechanism of resistance drift and its possible remediation.more » « less
An official website of the United States government

