skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Joint Probabilistic-Nyquist Pulse Shaping for LDPC-coded 8-PAM Signal in DWDM Data Center Communications
M-ary pulse-amplitude modulation (PAM) meets the requirements of data center communication because of its simplicity, but coarse entropy granularity cannot meet the dynamic bandwidth demands, and there is a large capacity gap between uniform formats and the Shannon limit. The dense wavelength division multiplexing (DWDM) system is widely used to increase the channel capacity, but low spectral efficiency of the intensity modulation/direct detection (IM/DD) solution restricts the throughput of the modern DWDM data center networks. Probabilistic shaping distribution is a good candidate to offer us a fine entropy granularity and efficiently reduce the gap to the Shannon limit, and Nyquist pulse shaping is widely used to increase the spectral efficiency. We aim toward the joint usage of probabilistic shaping and Nyquist pulse shaping with low-density parity-check (LDPC) coding to improve the bit error rate (BER) performance of 8-PAM signal transmission. We optimized the code rate of the LDPC code and compared different Nyquist pulse shaping parameters using simulations and experiments. We achieved a 0.43 dB gain using Nyquist pulse shaping, and a 1.1 dB gain using probabilistic shaping, while the joint use of probabilistic shaping and Nyquist pulse shaping achieved a 1.27 dB gain, which offers an excellent improvement without upgrading the transceivers.  more » « less
Award ID(s):
1907918
PAR ID:
10158884
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Applied sciences
Volume:
9
Issue:
23
ISSN:
2076-3417
Page Range / eLocation ID:
4996-1-4996-9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Low-density parity-check (LDPC) codes form part of the IRIG-106 standard and have been successfully deployed for the Telemetry Group version of shaped-offset quadrature phase shift keying (SOQPSK-TG) modulation. Recently, LDPC code solutions have been proposed and optimized for continuous phase modulations (CPMs), including pulse code modulation/frequency modulation (PCM/FM) and the multi-h CPM developed by the Advanced-Range TeleMetry program (ARTM CPM), the latter of which was shown to perform around one dB from channel capacity. In this paper, we consider the effect of the random puncturing and shortening of these LDPC codes to further improve spectrum efficiency. We perform asymptotic analyses of the ARTM0 code ensembles and present numerical simulation results that affirm the robust decoding performance promised by LDPC codes designed for ARTM CPM. 
    more » « less
  2. We investigate the performance of discrete (coded) modulations in the full-duplex compress-forward relay channel using multilevel coding. We numerically analyze the rates assigned to component binary codes of all levels. LDPC codes are used as the component binary codes to provide error protection. The compression at the relay is done via a nested scalar quantizer whose output is mapped to a codeword through LDPC codes. A compound Tanner graphical model and information-exchange algorithm are described for joint decoding of both messages sent from the source and relay. Simulation results show that the performance of the proposed system based on multilevel coding is better than that based on BICM, and is separated from the SNR threshold of the known CF achievable rate by two factors consisting approximately of the sum of the shaping gain (due to scalar quantization) and the separation of the LDPC code implementation from AWGN capacity. 
    more » « less
  3. This article presents a novel eight-ary modulation technique with improved signal-to-noise ratio (SNR) compared to conventional pulse amplitude modulation 8 (PAM-8). The proposed SNR-enhanced 8-ary (SNRE-8) scheme modulates pulse width, position, and amplitude to improve the SNR. The proposed SNRE-8 modulation leverages the wireline channel loss to perform the modulation. Digital decoding of mutually exclusive eyes generated by the proposed SNRE-8 modulation further improves the eye margin at the receiver. A 27-Gb/s transceiver is implemented in a 65-nm CMOS process employing the proposed modulation. A PAM-8 transmitter is implemented on the same chip for comparison purposes. Compared to the PAM-8 modulation, the proposed SNRE-8 modulation shows an average SNR improvement of 10.6 dB at the near-end eye at the cost of 6.6% eye width reduction. With the aid of a time-domain feed-forward equalizer (FFE) and a continuous-time linear equalizer (CTLE), the proposed SNRE-8 transceiver achieves a bit error rate (BER) of 10−8 on a 9-dB loss channel with an energy efficiency of 5.39 pJ/bit. 
    more » « less
  4. Photonic network-on-chip (PNoC) architectures employ photonic links with dense wavelength-division multiplexing (DWDM) to enable high throughput on-chip transfers. Unfortunately, increasing the DWDM degree (i.e., using a larger number of wavelengths) to achieve a higher aggregated data rate in photonic links and, hence, higher throughput in PNoCs, requires sophisticated and costly laser sources along with extra photonic hardware. This extra hardware can introduce undesired noise to the photonic link and increase the bit error rate (BER), power, and area consumption of PNoCs. To mitigate these issues, the use of 4-pulse amplitude modulation (4-PAM) signaling, instead of the conventional on-off keying (OOK) signaling, can halve the wavelength signals utilized in photonic links for achieving the target aggregate data rate while reducing the overhead of crosstalk noise, BER, and photonic hardware. There are various designs of 4-PAM modulators reported in the literature. For example, the signal superposition (SS)–, electrical digital-to-analog converter (EDAC)–, and optical digital-to-analog converter (ODAC)–based designs of 4-PAM modulators have been reported. However, it is yet to be explored how these SS-, EDAC-, and ODAC-based 4-PAM modulators can be utilized to design DWDM-based photonic links and PNoC architectures. In this article, we provide a systematic analysis of the SS, EDAC, and ODAC types of 4-PAM modulators from prior work with regards to their applicability and utilization overheads. We then present a heuristic-based search method to employ these 4-PAM modulators for designing DWDM-based SS, EDAC, and ODAC types of 4-PAM photonic links with two different design goals: (i) to attain the desired BER of 10 -9 at the expense of higher optical power and lower aggregate data rate and (ii) to attain maximum aggregate data rate with the desired BER of 10 -9 at the expense of longer packet transfer latency. We then employ our designed 4-PAM SS–, 4-PAM EDAC–, 4-PAM ODAC–, and conventional OOK modulator–based photonic links to constitute corresponding variants of the well-known CLOS and SWIFT PNoC architectures. We eventually compare our designed SS-, EDAC-, and ODAC-based variants of 4-PAM links and PNoCs with the conventional OOK links and PNoCs in terms of performance and energy efficiency in the presence of inter-channel crosstalk. From our link-level and PNoC-level evaluation, we have observed that the 4-PAM EDAC–based variants of photonic links and PNoCs exhibit better performance and energy efficiency compared with the OOK-, 4-PAM SS–, and 4-PAM ODAC–based links and PNoCs. 
    more » « less
  5. This paper presents a novel 8-ary modulation technique with higher SNR compared to the PAM-8. The proposed modulation (SNR-Enhanced), modulates the pulse width and amplitude to achieve an average SNR improvement of 9.5 dB over PAM-8 in the near-end eye at the cost of 8.2% reduction in the horizontal eye margin. Using 3-tap FFE and CTLE, the proposed transceiver achieves 1×10 -7 BER at 9 dB channel loss with an efficiency of 5.39 pJ/bit in the 65 nm CMOS process. 
    more » « less