skip to main content

This content will become publicly available on July 31, 2023

Title: Photonic Networks-on-Chip Employing Multilevel Signaling: A Cross-Layer Comparative Study
Photonic network-on-chip (PNoC) architectures employ photonic links with dense wavelength-division multiplexing (DWDM) to enable high throughput on-chip transfers. Unfortunately, increasing the DWDM degree (i.e., using a larger number of wavelengths) to achieve a higher aggregated data rate in photonic links and, hence, higher throughput in PNoCs, requires sophisticated and costly laser sources along with extra photonic hardware. This extra hardware can introduce undesired noise to the photonic link and increase the bit error rate (BER), power, and area consumption of PNoCs. To mitigate these issues, the use of 4-pulse amplitude modulation (4-PAM) signaling, instead of the conventional on-off keying (OOK) signaling, can halve the wavelength signals utilized in photonic links for achieving the target aggregate data rate while reducing the overhead of crosstalk noise, BER, and photonic hardware. There are various designs of 4-PAM modulators reported in the literature. For example, the signal superposition (SS)–, electrical digital-to-analog converter (EDAC)–, and optical digital-to-analog converter (ODAC)–based designs of 4-PAM modulators have been reported. However, it is yet to be explored how these SS-, EDAC-, and ODAC-based 4-PAM modulators can be utilized to design DWDM-based photonic links and PNoC architectures. In this article, we provide a systematic analysis of the SS, EDAC, and more » ODAC types of 4-PAM modulators from prior work with regards to their applicability and utilization overheads. We then present a heuristic-based search method to employ these 4-PAM modulators for designing DWDM-based SS, EDAC, and ODAC types of 4-PAM photonic links with two different design goals: (i) to attain the desired BER of 10 -9 at the expense of higher optical power and lower aggregate data rate and (ii) to attain maximum aggregate data rate with the desired BER of 10 -9 at the expense of longer packet transfer latency. We then employ our designed 4-PAM SS–, 4-PAM EDAC–, 4-PAM ODAC–, and conventional OOK modulator–based photonic links to constitute corresponding variants of the well-known CLOS and SWIFT PNoC architectures. We eventually compare our designed SS-, EDAC-, and ODAC-based variants of 4-PAM links and PNoCs with the conventional OOK links and PNoCs in terms of performance and energy efficiency in the presence of inter-channel crosstalk. From our link-level and PNoC-level evaluation, we have observed that the 4-PAM EDAC–based variants of photonic links and PNoCs exhibit better performance and energy efficiency compared with the OOK-, 4-PAM SS–, and 4-PAM ODAC–based links and PNoCs. « less
; ; ; ; ;
Award ID(s):
2006788 1813370
Publication Date:
Journal Name:
ACM Journal on Emerging Technologies in Computing Systems
Page Range or eLocation-ID:
1 to 36
Sponsoring Org:
National Science Foundation
More Like this
  1. We experimentally demonstrate a silicon photonic chip-scale 16-channel wavelength division multiplexer (WDM) operating in the O-band. The silicon photonic chip consists of a common-input bus waveguide integrated with a sequence of 16 spectral add-drop filters implemented by 4-port contra-directional Bragg couplers and resonant cladding modulated perturbations. The combination of these features reduces the spectral bandwidth of the filters and improves the crosstalk. An apodization of the cladding modulated perturbations between the bus and the add/drop waveguides is used to optimize the strength of the coupling coefficient in the propagation direction to reduce the intra-channel crosstalk on adjacent channels. The fabricated chip was validated experimentally with a measured intra-channel crosstalk of ∼−18.9 dB for a channel spacing of 2.6 nm. The multiplexer/demultiplexer chip was also experimentally tested with a 10 Gbps data waveform. The resulting eye-pattern indicates that this approach is suitable for datacenter WDM-based interconnects in the O-band with large aggregate bandwidths.

  2. Feature extraction, such as spectral occupancy, interferer energy and type, or direction-of-arrival, from wideband radio-frequency (RF) signals finds use in a growing number of applications as it enhances RF transceivers with cognitive abilities and enables parameter tuning of traditional RF chains. In power and cost limited applications, e.g., for sensor nodes in the Internet of Things, wideband RF feature extraction with conventional, Nyquist-rate analog-to-digital converters is infeasible. However, the structure of many RF features (such as signal sparsity) enables the use of compressive sensing (CS) techniques that acquire such signals at sub-Nyquist rates; while such CS-based analog-to-information (A2I) converters have the potential to enable low-cost and energy-efficient wideband RF sensing, they suffer from a variety of real-world limitations, such as noise folding, low sensitivity, aliasing, and limited flexibility. This paper proposes a novel CS-based A2I architecture called non-uniform wavelet sampling. Our solution extracts a carefully-selected subset of wavelet coefficients directly in the RF domain, which mitigates the main issues of existing A2I converter architectures. For multi-band RF signals, we propose a specialized variant called non-uniform wavelet bandpass sampling (NUWBS), which further improves sensitivity and reduces hardware complexity by leveraging the multi-band signal structure. We use simulations to demonstrate that NUWBSmore »approaches the theoretical performance limits of ℓ₁-norm-based sparse signal recovery. We investigate hardware-design aspects and show ASIC measurement results for the wavelet generation stage, which highlight the efficacy of NUWBS for a broad range of RF feature extraction tasks in cost- and power-limited applications.« less
  3. Millimeter wave (mmW) communications is viewed as the key enabler of 5G cellular networks due to vast spectrum availability that could boost peak rate and capacity. Due to increased propagation loss in mmW band, transceivers with massive antenna array are required to meet a link budget, but their power consumption and cost become limiting factors for commercial systems. Radio designs based on hybrid digital and analog array architectures and the usage of radio frequency (RF) signal processing via phase shifters have emerged as potential solutions to improve radio energy efficiency and deliver performances close to the conventional digital antenna arrays. In this paper, we provide an overview of the state-of-the-art mmW massive antenna array designs and comparison among three array architectures, namely digital array, partially-connected hybrid array (sub-array), and fully-connected hybrid array. The comparison of performance, power, and area for these three architectures is performed for three representative 5G downlink use cases, which cover a range of pre-beamforming signal-to-noise-ratios (SNR) and multiplexing regimes. This is the first study to comprehensively model and quantitatively analyze all design aspects and criteria including: 1) optimal linear precoder, 2) impact of quantization error in digital-to-analog converter (DAC) and phase shifters, 3) RF signal distributionmore »network, 4) power and area estimation based on state-of-the-art mmW circuits including baseband digital precoding, digital signal distribution network, high-speed DACs, oscillators, mixers, phase shifters, RF signal distribution network, and power amplifiers. Our simulation results show that the fully-digital array architecture is the most power and area efficient compared against optimized designs for sub-array and hybrid array architectures. Our analysis shows that digital array architecture benefits greatly from multi-user multiplexing. The analysis also reveals that sub-array architecture performance is limited by reduced beamforming gain due to array partitioning, while the system bottleneck of the fully-connected hybrid architecture is the excessively complicated and power hungry RF signal distribution network.« less
  4. Electro optic modulators being key for many signal processing systems must adhere to requirements given by both electrical and optical constraints. Distinguishing between charge driven (CD) and field driven (FD) designs, we answer the question of whether fundamental performance benefits can be claimed of modulators based on emerging electro-optic materials. Following primary metrics, we compare the performance of emerging electro-optic and electro-absorption modulators such as graphene, transparent conductive oxides, and Si, based on charge injection with that of the ‘legacy’ FD modulators, such as those based on lithium niobate and quantum confined Stark effect. We show that for rather fundamental reasons and when considering energy and speed only, FD modulators always outperform CD ones in the conventional wavelength scale photonic waveguides. However, for waveguides featuring a sub-wavelength optical mode, such as those assisted by plasmonics, the emerging CD devices are indeed highly competitive especially for applications where component-density on-chip is a factor.

  5. Brown, Thomas G. ; Wilson, Tony ; Waller, Laura (Ed.)
    Multifocal microscopes (MFMs) are becoming increasingly popular in fluorescence microscopy due to their high speed three-dimensional (3D) imaging capabilities. Conventional MFMs use a fixed fabricated grating as the multifocal grating but these are limited to a restricted wavelength range and a fixed object-plane separation. Spatial light modulators (SLMs) represent an alternative to fabricated gratings due to their real-time programmability, providing complete control over emission wavelength range and object plane separations. However, algorithms commonly used to obtain multifocal grating patterns which provide uniform intensity across the subimages are not directly applicable to SLM-based MFMs due to inherent pixel-to-pixel crosstalk effects present in the SLM chip. We recently developed an in-situ iterative algorithm which generates grating patterns that provide near-uniform illumination of the subimages in SLM-based MFMs. This algorithm is universal across wavelengths, object-plane separations, and SLM manufacturers. As part of our efforts to develop an SLM-based MFM that can respond rapidly to changing experimental parameters, we implement a gradient descent-based optimization method. We evaluate its performance in comparison with a grid search based routine. Experimental results obtained on a custom-made SLM-based MFM indicate that the grid-search optimized grating patterns provide superior subimage intensity uniformity versus the gradient-descent method. These experiments alsomore »provide an insight into the energy landscape involved in these optimizations. This study increases the utility of SLM-based MFMs in high-speed imaging.« less