Abstract The thermal rearrangements of 1,2-dialkynylimidazoles have been shown to lead to trapping products of cyclopenta[b]pyrazine carbene intermediates. Here we show that a similar rearrangement also occurs in the case of 1,2-diethynyl-1H-pyrrole, and that trapping the intermediate cyclopenta[b]pyridine carbene with solvent THF affords an ylide that undergoes a Stevens rearrangement to a spirocyclic product. An analogous rearrangement and trapping is observed for thermolysis of 1,2-dialkynylimidazoles in THF or 1,4-dioxane.
more »
« less
Synthesis of Spirocyclic 1‐Pyrrolines from Nitrones and Arynes through a Dearomative [3,3′]‐Sigmatropic Rearrangement
Abstract A dearomative [3,3′]‐sigmatropic rearrangement that converts N‐alkenylbenzisoxazolines into spirocyclic pyrroline cyclohexadienones has been developed by using the dipolar cycloaddition of an N‐alkenylnitrone and an aryne to access these unusual transient rearrangement precursors. This cascade reaction affords spirocyclic pyrrolines that are inaccessible through dipolar cycloadditions of exocyclic cyclohexenones and provides a fundamentally new approach to novel spirocyclic pyrroline and pyrrolidine motifs that are common scaffolds in biologically‐active molecules. Diastereoselective functionalization processes have also been explored to demonstrate the divergent synthetic utility of the unsaturated spirocyclic products.
more »
« less
- Award ID(s):
- 1855833
- PAR ID:
- 10158924
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 59
- Issue:
- 35
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 15244-15248
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An auto-tandem catalytic, branched-selective rearrangement of substituted N-alloc-N-allyl ynamides was developed. This reaction provides ready access to complex quaternary nitrile products with vinylogous stereocentres in excellent diastereoselectivity, including contiguous all-carbon quaternary centres. The stereochemical outcome is determined via a Pd(0) catalysed dipolar ketenimine aza-Claisen rearrangement and computational studies exemplify the key role ligand geometry plays.more » « less
-
Selectivity in organic chemistry is generally presumed to arise from energy differences between competing selectivity-determining transition states. However, in cases where static density functional theory (DFT) fails to reproduce experimental product distributions, dynamic effects can be examined to understand the behavior of more complex reaction systems. Previously, we reported a method for nitrogen deletion of secondary amines which relies on the formation of isodiazene intermediates that subsequently extrude dinitrogen with concomitant C–C bond formation via a caged diradical. Herein, a detailed mechanistic analysis of the nitrogen deletion of 1-aryl-tetrahydroisoquinolines is presented, suggesting that in this system the previously determined diradical mechanism undergoes dynamically controlled partitioning to both the normal 1,5-coupling product and an unexpected spirocyclic dearomatized intermediate, which converges to the expected indane by an unusually facile 1,3-sigmatropic rearrangement. This mechanism is not reproduced by static DFT but is supported by quasi-classical molecular dynamics calculations and unifies several unusual observations in this system, including partial chirality transfer, nonstatistical isotopic scrambling at the ethylene bridge, the isolation of spirocyclic dearomatized species in a related heterocyclic series, and the observation that introduction of an 8-substituent dramatically improves enantiospecificity.more » « less
-
Abstract In oriented‐sample (OS) solid‐state NMR of membrane proteins, the angular‐dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only1H–15N dipolar couplings and15N chemical shifts have been routinely assessed in oriented15N‐labeled samples. The main obstacle for extending this technique to membrane proteins of arbitrary topology has remained in the lack of additional experimental restraints. We have developed a new experimental triple‐resonance NMR technique, which was applied to uniformly doubly (15N,13C)‐labeled Pf1 coat protein in magnetically aligned DMPC/DHPC bicelles. The previously inaccessible1Hα–13Cαdipolar couplings have been measured, which make it possible to determine the torsion angles between the peptide planes without assuming α‐helical structure a priori. The fitting of three angular restraints per peptide plane and filtering by Rosetta scoring functions has yielded a consensus α‐helical transmembrane structure for Pf1 protein.more » « less
-
Circadian rhythms are determined by cell-autonomous transcription-translation feedback loops that entrain to environmental stimuli. In the model circadian clock of Drosophila melanogaster, the clock is set by the light-induced degradation of the core oscillator protein timeless (TIM) by the principal light-sensor cryptochrome (CRY). The cryo-EM structure of CRY bound to TIM revealed that within the extensive CRY:TIM interface, the TIM N-terminus binds into the CRY FAD pocket, in which FAD and the associated phosphate-binding loop (PBL) undergo substantial rearrangement. The TIM N-terminus involved in CRY binding varies in isoforms that facilitate the adaptation of flies to different light environments. Herein, we demonstrate, through peptide binding assays and pulsed-dipolar electron spin resonance (ESR) spectroscopy, that the TIM N-terminal peptide alone exhibits light-dependent binding to CRY and that the affinity of the interaction depends on the initiating methionine residue. Extensions to the TIM N-terminus that mimic less light-sensitive variants have substantially reduced interactions with CRY. Substitutions of CRY residues that couple to the flavin rearrangement in the CRY:TIM complex have dramatic effects on CRY light activation. CRY residues Arg237 on α8, Asn253, and Gln254 on the PBL are critical for the release of the CRY autoinhibitory C-terminal tail (CTT) and subsequent TIM binding. These key light-responsive elements of CRY are well conserved throughout Type I cryptochromes of invertebrates but not by cryptochromes of chordates and plants, which likely utilize a distinct light-activation mechanism.more » « less
An official website of the United States government
