Abstract In this work, a scalable and rapid process is developed for creating a low‐cost humidity sensor for wireless monitoring of moisture levels within packaged goods. The sensor comprises a moisture‐sensitive interdigitated capacitor connected to a planar spiral coil, forming an LC circuit whose resonant frequency is a function of environmental humidity. The sensor is fabricated on a commercially available metallized parchment paper through selective laser ablation of the laminated aluminum (Al) film on the parchment paper substrate. The laser ablation process provides a unique one‐step patterning of the conductive Al layer on the paper while simultaneously creating high surface area Al2O3nanoparticles within the laser‐ablated regions. The intrinsic humidity‐responsive characteristics of the laser‐induced Al2O3nanostructures provide the wireless sensor with a tenfold higher sensitivity to humidity than a similar LC resonant sensor prepared by conventional photolithography‐based processes on FR‐4 substrates. The frequency change of the sensor is observed to be a linear function within the range of 0−85% RH, providing an average sensitivity of −87 kHz RH−1with good repeatability and stable performance. Furthermore, the employment of scalable laser fabrication processes using commercially available inexpensive materials renders these technologies viable for roll‐to‐roll manufacturing of low‐cost wireless sensors for smart packaging applications.
more »
« less
Scalable Fabrication of Highly Flexible Porous Polymer-Based Capacitive Humidity Sensor Using Convergence Fiber Drawing
In this study, we fabricated a highly flexible fiber-based capacitive humidity sensor using a scalable convergence fiber drawing approach. The sensor’s sensing layer is made of porous polyetherimide (PEI) with its porosity produced in situ during fiber drawing, whereas its electrodes are made of copper wires. The porosity induces capillary condensation starting at a low relative humidity (RH) level (here, 70%), resulting in a significant increase in the response of the sensor at RH levels ranging from 70% to 80%. The proposed humidity sensor shows a good sensitivity of 0.39 pF/% RH in the range of 70%–80% RH, a maximum hysteresis of 9.08% RH at 70% RH, a small temperature dependence, and a good stability over a 48 h period. This work demonstrates the first fiber-based humidity sensor fabricated using convergence fiber drawing.
more »
« less
- Award ID(s):
- 1847436
- PAR ID:
- 10158983
- Date Published:
- Journal Name:
- Polymers
- Volume:
- 11
- Issue:
- 12
- ISSN:
- 2073-4360
- Page Range / eLocation ID:
- 1985
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Proton‐exchange membrane fuel cell vehicles offer a low‐carbon alternative to traditional oil fuel vehicles, but their performances still need improvement to be competitive. Raising their operating temperature to 120 °C will enhance their efficiency but is currently unfeasible due to the poor mechanical properties at high temperatures of the state‐of‐the‐art proton‐exchange membranes consisting of perfluorosulfonic acid (PFSA) ionomers. To address this issue, xx designed composite membranes made of two networks: a mat of hybrid fibers to maintain the mechanical properties filled with a matrix of PFSA‐based ionomer to ensure the proton conductivity. The hybrid fibers obtained by electrospinning are composed of intermixed domains of sulfonated silica and a fluorinated polymer. The inter‐fiber porosity is then filled with a PFSA ionomer to obtain dense composite membranes with a controlled fibers‐to‐ionomer ratio. At 80 °C, these obtained composite membranes show comparable performances to a pure PFSA commercial membrane. At 120 °C however, the tensile strength of the PFSA membrane drastically drop down to 0.2 MPa, while it is maintained at 7.0 MPa for the composite membrane. In addition, the composite membrane shows a good conductivity of up to 0.1 S cm −1 at 120 °C/90% RH, which increases with the ionomer content.more » « less
-
The phase state of respiratory aerosols and droplets has been linked to the humidity-dependent survival of pathogens such as SARS-CoV-2. To inform strategies to mitigate the spread of infectious disease, it is thus necessary to understand the humidity-dependent phase changes associated with the particles in which pathogens are suspended. Here, we study phase changes of levitated aerosols and droplets composed of model respiratory compounds (salt and protein) and growth media (organic–inorganic mixtures commonly used in studies of pathogen survival) with decreasing relative humidity (RH). Efflorescence was suppressed in many particle compositions and thus unlikely to fully account for the humidity-dependent survival of viruses. Rather, we identify organic-based, semisolid phase states that form under equilibrium conditions at intermediate RH (45 to 80%). A higher-protein content causes particles to exist in a semisolid state under a wider range of RH conditions. Diffusion and, thus, disinfection kinetics are expected to be inhibited in these semisolid states. These observations suggest that organic-based, semisolid states are an important consideration to account for the recovery of virus viability at low RH observed in previous studies. We propose a mechanism in which the semisolid phase shields pathogens from inactivation by hindering the diffusion of solutes. This suggests that the exogenous lifetime of pathogens will depend, in part, on the organic composition of the carrier respiratory particle and thus its origin in the respiratory tract. Furthermore, this work highlights the importance of accounting for spatial heterogeneities and time-dependent changes in the properties of aerosols and droplets undergoing evaporation in studies of pathogen viability.more » « less
-
Abstract An orb web's adhesive capture spiral is responsible for prey retention. This thread is formed of regularly spaced glue droplets supported by two flagelliform axial lines. Each glue droplet features a glycoprotein adhesive core covered by a hygroscopic aqueous layer, which also covers axial lines between the droplets, making the entire thread responsive to environmental humidity.We characterized the effect of relative humidity (RH) on ability ofArgiope aurantiaandArgiope trifasciatathread arrays to retain houseflies and characterize the effect of humidity on their droplet properties. Using these data and those ofAraneus marmoreusfrom a previous study, we then develop a regression model that correlated glycoprotein and flagelliform fiber properties with prey retention time. The model selection process included newly determined, humidity‐specific Young's modulus and toughness values for the three species' glycoproteins.Argiopeaurantiadroplets are more hygroscopic thanA. trifasciatadroplets, causing the glycoprotein withinA. aurantiadroplets to become oversaturated at RH greater than 55% RH and their extension to decrease, whereasA. trifasciatadroplet performance increases to 72% RH. This difference is reflected in species' prey retention times, with that ofA. aurantiapeaking at 55% RH and that ofA. trifasciataat 72% RH.Fly retention time was explained by a regression model of five variables: glue droplet distribution, flagelliform fiber work of extension, glycoprotein volume, glycoprotein thickness, and glycoprotein Young's modulus.The material properties of both glycoprotein and flagelliform fibers appear to be phylogenetically constrained, whereas natural selection can more freely act on the amount of each material invested in a thread and on components of the thread's aqueous layer. Thus, it becomes easier to understand how natural selection can tune the performance of viscous capture threads by directing small changes in these components.more » « less
-
The ability of an atmospheric aerosol to take up water or to participate in heterogeneous reactions is highly influenced by its phase state – solid, semi-solid, or liquid. These changes in phase state can be predicted by glass transition temperature (Tg), as particles at temperatures below their Tg will show solid properties, while increasing the temperature above their Tg will allow for semi-solid and eventually liquid properties. Historically, measurements of the Tg of bulk materials have been studied in order to model the phase states of aerosols in the atmosphere; however, these methods only permit an estimation of aerosol Tg based on their bulk chemical composition. Determining the Tg of individual particles will allow for more accurate model predictions of aerosol phase state. Herein, we apply a recently developed method utilizing a nano-thermal analysis (nanoTA) module coupled to an atomic force microscope (AFM), to determine the Tg of individual secondary organic aerosol (SOA) particles generated from the reactive uptake of isoprene epoxydiol (IEPOX) onto acidic ammonium sulfate aerosol particles. NanoTA works by using a specialized AFM probe which can be heated while in contact with a particle of interest. As the temperature increases, the probe deflection will first increase due to thermal expansion of the particle followed by a decrease at its melting temperature (Tm). The Tg of the particle can then be determined from Tm using the Boyer–Beaman rule. We compared the Tg of IEPOX-derived SOA particles generated at relative humidity (RH) of 30, 65, and 80%, and found that increasing RH from 30 to 80% led to a decrease in average Tg of 22 K, indicating less viscous particles at higher RH conditions. Our measurements with this technique will allow for more accurate representations of the phase state of aerosols in the atmosphere.more » « less
An official website of the United States government

