skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recent developments in nickel-catalyzed intermolecular dicarbofunctionalization of alkenes
Nickel-catalyzed three-component alkene difunctionalization has rapidly emerged as a powerful tool for forging two C–C bonds in a single reaction. Building upon the powerful modes of bond construction in traditional two-component cross-coupling, various research groups have demonstrated the versatility of nickel in enabling catalytic 1,2-dicarbofunctionalization using a wide range of carbon-based electrophiles and nucleophiles and in a fully intermolecular fashion. Though this area has emerged only recently, the last few years have witnessed a proliferation of publications on this topic, underscoring the potential of this strategy to develop into a general platform that offers high regio- and stereoselectivity. This minireview highlights the recent progress in the area of intermolecular 1,2-dicarbofunctionalization of alkenes via nickel catalysis and discusses lingering challenges within this reactivity paradigm.  more » « less
Award ID(s):
1800280
PAR ID:
10158990
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
11
Issue:
17
ISSN:
2041-6520
Page Range / eLocation ID:
4287 to 4296
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Catalytic enantioselective 1,2-dicarbofunctionalization (1,2-DCF) of alkenes is a powerful transformation of growing importance in organic synthesis for constructing chiral building blocks, bioactive molecules, and agrochemicals. Both in a two- and three-component context, this family of reactions generates densely functionalized, structurally complex products in a single step. Across several distinct mechanistic pathways at play in these transformations with nickel or palladium catalysts, stereocontrol can be obtained through tailored chiral ligands. In this Review we discuss the various strategies, mechanisms, and catalysts that have been applied to achieve enantioinduction in alkene 1,2-DCF. 1 Introduction 2 Two-Component Enantioselective 1,2-DCF via Migratory Insertion 3 Two-Component Enantioselective 1,2-DCF via Radical Capture 4 Three-Component Enantioselective 1,2-DCF via Radical Capture 5 Three-Component Enantioselective 1,2-DCF via Migratory Insertion 6 Miscellaneous Mechanisms 7 Conclusion 
    more » « less
  2. Abstract We disclose a Ni‐catalyzed cyclization/alkylmetal interception reaction in which products are readily linearized to permit regiodefined alkene dicarbofunctionalization. This method offers a convenient route to access 1,2‐oxasilolane heterocycles, 3‐hydroxysilanes and 4‐arylalkanols with the formation of C(sp3)−C(sp3) bonds at primary and secondary alkyl carbon centers. In this reaction, a silicon‐oxygen (Si−O) bond functions as a detachable linker that can be delinked with several hydride, alkyl, aryl and vinyl nucleophiles to create profusely functionalized 3‐hydroxysilanes. A silicon motif in the cyclic C(sp3)−Si−O construct in 1,2‐oxasilolane heterocycles can also be selectively deleted by Pd‐catalyzed hydrodesilylation affording Si‐ablated linear alcohol products reminiscent of vicinal ethylene dicarbofunctionalization with C(sp3) and C(sp2) carbon sources. 
    more » « less
  3. null (Ed.)
    A highly chemoselective iron-catalyzed three-component dicarbofunctionalization of unactivated olefins with alkyl halides (iodides and bromides) and sp 2 -hybridized Grignard reagents is reported. The reaction operates under fast turnover frequency and tolerates a diverse range of sp 2 -hybridized nucleophiles (electron-rich and electron-deficient (hetero)aryl and alkenyl Grignard reagents), alkyl halides (tertiary alkyl iodides/bromides and perfluorinated bromides), and unactivated olefins bearing diverse functional groups including tethered alkenes, ethers, protected alcohols, aldehydes, and amines to yield the desired 1,2-alkylarylated products with high regiocontrol. Further, we demonstrate that this protocol is amenable for the synthesis of new (hetero)carbocycles including tetrahydrofurans and pyrrolidines via a three-component radical cascade cyclization/arylation that forges three new C–C bonds. 
    more » « less
  4. null (Ed.)
    Alkene 1,2-dicarbofunctionalizations are highly sought-after transformations as they enable a rapid increase of molecular complexity in one synthetic step. Traditionally, these conjunctive couplings proceed through the intermediacy of alkylmetal species susceptible to deleterious pathways including β-hydride elimination and protodemetalation. Herein, an intermolecular 1,2-dicarbofunctionalization using alkyl N -(acyloxy)phthalimide redox-active esters as radical progenitors and organotrifluoroborates as carbon-centered nucleophiles is reported. This redox-neutral, multicomponent reaction is postulated to proceed through photochemical radical/polar crossover to afford a key carbocation species that undergoes subsequent trapping with organoboron nucleophiles to accomplish the carboallylation, carboalkenylation, carboalkynylation, and carboarylation of alkenes with regio- and chemoselective control. The mechanistic intricacies of this difunctionalization were elucidated through Stern–Volmer quenching studies, photochemical quantum yield measurements, and trapping experiments of radical and ionic intermediates. 
    more » « less
  5. N-heterocycles are ubiquitous in natural products, pharmaceuticals, organic materials, and numerous functional molecules. Among the current synthetic approaches, transition metal-catalyzed C–H functionalization has gained considerable attention in recent years due to its advantages of simplicity, high atomic economy, and the ready availability of starting materials. In the field of N-heterocycle synthesis via C–H functionalization, nickel has been recognized as one of the most important catalysts. In this review, we will introduce nickel-catalyzed intramolecular and intermolecular pathways for N-heterocycle synthesis from 2008 to 2021. 
    more » « less