skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photoelectron spectra of alkali metal–ammonia microjets: From blue electrolyte to bronze metal
Experimental studies of the electronic structure of excess electrons in liquids—archetypal quantum solutes—have been largely restricted to very dilute electron concentrations. We overcame this limitation by applying soft x-ray photoelectron spectroscopy to characterize excess electrons originating from steadily increasing amounts of alkali metals dissolved in refrigerated liquid ammonia microjets. As concentration rises, a narrow peak at ~2 electron volts, corresponding to vertical photodetachment of localized solvated electrons and dielectrons, transforms continuously into a band with a sharp Fermi edge accompanied by a plasmon peak, characteristic of delocalized metallic electrons. Through our experimental approach combined with ab initio calculations of localized electrons and dielectrons, we obtain a clear picture of the energetics and density of states of the ammoniated electrons over the gradual transition from dilute blue electrolytes to concentrated bronze metallic solutions.  more » « less
Award ID(s):
1665532
PAR ID:
10158994
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
368
Issue:
6495
ISSN:
0036-8075
Page Range / eLocation ID:
p. 1086-1091
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Excess electrons in liquid acetonitrile are of particular interest because they exist in two different forms in equilibrium: they can be present as traditional solvated electrons in a cavity, and they can form some type of solvated molecular anion. Studies of small acetonitrile cluster anions in the gas phase show two isomers with distinct vertical detachment energies, and it is tempting to presume that the two gas-phase cluster anion isomers are precursors of the two excess electron species present in bulk solution. In this paper, we perform DFT-based ab initio molecular dynamics simulations of acetonitrile cluster anions to understand the electronic species that are present and why they have different binding energies. Using a long-range-corrected density functional that was optimally tuned to describe acetonitrile cluster anion structures, we have theoretically explored the chemistry of (CH3CN)n¯ cluster anions with sizes n=5,7 and 10. Since the temperature of the experimental cluster anions is not known, we performed two sets of simulations that investigated how the way in which the cluster anions are prepared affects the excess electron binding motif: one set of simulations simply attached excess electrons to neutral (CH3CN)n clusters, providing little opportunity for the clusters to relax in the presence of the excess electron, while the other set allowed the cluster anions to thermally equilibrate near room temperature. We find that both sets of simulations show three distinct electron binding motifs: electrons can attach to the surface of the cluster (dipole-bound) or be present as either solvated monomer anions, CH3CN¯, or as solvated molecular dimer anions, (CH3CN)2¯. All three species have higher binding energies at larger cluster sizes. Thermal equilibration strongly favors the formation of the valence-bound molecular anions relative to surface-bound excess electrons, and the dimer anion becomes more stable than the monomer anion and surface-bound species as the cluster size increases. The calculated photoelectron spectra from our simulations in which there was poor thermal equilibration are in good agreement with experiment, suggesting assignment of the two experimental cluster anion isomers as the surface-bound electron and the solvated molecular dimer anion. The simulations also suggest that the shoulder seen experimentally on the low-energy isomer's detachment peak is not part of a vibronic progression but instead results from molecular monomer anions. Nowhere in the size range that we explore do we see evidence for a non-valence, cavity-bound interior-solvated electron, indicating that this species is likely only accessible at larger sizes with good thermal equilibration. 
    more » « less
  2. Hydrated electrons are anionic species that are formed when an excess electron is introduced into liquid water. Building an understanding of how hydrated electrons behave in solution has been a long-standing effort of simulation methods, of which density functional theory (DFT) has come to the fore in recent years. The ability of DFT to model the reactive chemistry of hydrated electrons is an attractive advantage over semi-classical methodologies; however, relatively few density functional approximations (DFAs) have been used for the hydrated electron simulations presented in the literature. Here, we simulate hydrated electron systems using a series of exchange–correlation (XC) functionals spanning Jacob’s ladder. We calculate a variety of experimental and other observables of the hydrated electron and compare the XC functional dependence for each quantity. We find that the formation of a stable localized hydrated electron is not necessarily limited to hybrid XC functionals and that some hybrid functionals produce delocalized hydrated electrons or electrons that react with the surrounding water at an unphysically fast rate. We further characterize how different DFAs impact the solvent structure and predicted spectroscopy of the hydrated electron, considering several methods for calculating the hydrated electron’s absorption spectrum for the best comparison between structures generated using different density functionals. None of the dozen or so DFAs that we investigated are able to correctly predict the hydrated electron’s spectroscopy, vertical detachment energy, or molar solvation volume. 
    more » « less
  3. Electrides have emerged as promising materials with exotic properties due to the presence of localized electrons detached from all atoms. Despite the continuous discovery of many new electrides, most of them are based on atypical compositions, and their applications require an inert surface structure to passivate reactive excess electrons. Here, we demonstrate a different route to attain tunable electrides. We first report that monolayer transition metal dichalcogenides (TMDCs) exhibit weak electride characteristics, which is the remainder of the electride feature of the transition metal sublattice. By introducing chalcogen vacancies, the enhanced electride characteristics are comparable to those of known electrides. Since the precise tailoring of the chalcogen vacancy concentration has been achieved experimentally, we proposed that TMDCs can be used to build electrides with controllable intensities. Furthermore, we demonstrate that the electride states at the chalcogen vacancy of monolayer TMDCs will play an important role in catalyzing hydrogen evolution reactions. 
    more » « less
  4. An electronic solid with itinerant carriers and localized magnetic moments represents a paradigmatic strongly correlated system. The electrical transport properties associated with the itinerant carriers, as they scatter off these local moments, have been scrutinized across a number of materials. Here, we analyze the transport characteristics associated with ultraclean PdCrO 2 —a quasi-two-dimensional material consisting of alternating layers of itinerant Pd-electrons and Mott-insulating CrO 2 layers—which shows a pronounced regime ofT-linear resistivity over a wide range of intermediate temperatures. By contrasting these observations to the transport properties in a closely related material PdCoO 2 , where the CoO 2 layers are band-insulators, we can rule out the traditional electron–phonon interactions as being responsible for this interesting regime. We propose a previously ignored electron-magneto-elastic interaction between the Pd-electrons, the Cr local moments and an out-of-plane phonon as the main scattering mechanism that leads to the significant enhancement of resistivity and aT-linear regime in PdCrO 2 at temperatures far in excess of the magnetic ordering temperature. We suggest a number of future experiments to confirm this picture in PdCrO 2 as well as other layered metallic/Mott-insulating materials. 
    more » « less
  5. Anions formed by the perhalobenzene series C$$_6$$Cl$$_{n}$$F$$_{6-n}$$ ($n=0-6$) are studied computationally. All members of the series form both stable valence and stable non-valence anions. At the geometry of the neutral parents, only non-valence anions are bound, and the respective vertical electron affinities show values in the $20$ to $60$meV range. Valence anions show distorted non-planar structures, and one can distinguish two types of conformers. A-type conformers show puckered-ring structures and excess electrons delocalized over several C-Cl bonds [in case of C$$_6$$F$$_6^-$$, C-F bonds], while B-type conformers possess excess electrons essentially localized in a single C-Cl bond, which is accordingly strongly stretched and bent out-of-plane. For a specific anion, all conformers are close in energy (relative energies of less than $10$kJ/mol) and are connected by low-lying transition states. Accordingly, A-type and B-type conformers possess similar adiabatic electron affinities, however, their vertical detachment energies exhibit drastically different values, which should ease conformer distinction in photoelectron spectroscopy. 
    more » « less