skip to main content

Title: Ab Initio Simulations of Poorly- and Well-Equilibrated (CH3CN)n¯ Cluster Anions: Assigning Experimental Photoelectron Peaks to Surface-Bound Electrons and Solvated Monomer and Dimer Anions
Excess electrons in liquid acetonitrile are of particular interest because they exist in two different forms in equilibrium: they can be present as traditional solvated electrons in a cavity, and they can form some type of solvated molecular anion. Studies of small acetonitrile cluster anions in the gas phase show two isomers with distinct vertical detachment energies, and it is tempting to presume that the two gas-phase cluster anion isomers are precursors of the two excess electron species present in bulk solution. In this paper, we perform DFT-based ab initio molecular dynamics simulations of acetonitrile cluster anions to understand the electronic species that are present and why they have different binding energies. Using a long-range-corrected density functional that was optimally tuned to describe acetonitrile cluster anion structures, we have theoretically explored the chemistry of (CH3CN)n¯ cluster anions with sizes n=5,7 and 10. Since the temperature of the experimental cluster anions is not known, we performed two sets of simulations that investigated how the way in which the cluster anions are prepared affects the excess electron binding motif: one set of simulations simply attached excess electrons to neutral (CH3CN)n clusters, providing little opportunity for the clusters to relax in the presence more » of the excess electron, while the other set allowed the cluster anions to thermally equilibrate near room temperature. We find that both sets of simulations show three distinct electron binding motifs: electrons can attach to the surface of the cluster (dipole-bound) or be present as either solvated monomer anions, CH3CN¯, or as solvated molecular dimer anions, (CH3CN)2¯. All three species have higher binding energies at larger cluster sizes. Thermal equilibration strongly favors the formation of the valence-bound molecular anions relative to surface-bound excess electrons, and the dimer anion becomes more stable than the monomer anion and surface-bound species as the cluster size increases. The calculated photoelectron spectra from our simulations in which there was poor thermal equilibration are in good agreement with experiment, suggesting assignment of the two experimental cluster anion isomers as the surface-bound electron and the solvated molecular dimer anion. The simulations also suggest that the shoulder seen experimentally on the low-energy isomer's detachment peak is not part of a vibronic progression but instead results from molecular monomer anions. Nowhere in the size range that we explore do we see evidence for a non-valence, cavity-bound interior-solvated electron, indicating that this species is likely only accessible at larger sizes with good thermal equilibration. « less
Authors:
;
Award ID(s):
1856050
Publication Date:
NSF-PAR ID:
10275513
Journal Name:
The journal of physical chemistry
ISSN:
1520-5215
Sponsoring Org:
National Science Foundation
More Like this
  1. Quadrupole-bound anions are negative ions in which their excess electrons are loosely bound by long-range electron-quadrupole attractions. Experimental evidence for quadrupole-bound anions has been scarce; until now, only trans -succinonitrile had been experimentally confirmed to form a quadrupole-bound anion. In this study, we present experimental evidence for a new quadrupole-bound anion. Our combined Rydberg electron transfer/anion photoelectron spectroscopy study demonstrates that the ee conformer of 1,4-dicyanocyclohexane (DCCH) supports a quadrupole-bound anion state, and that the cis -DCCH conformer forms a dipole-bound anion state. The electron binding energies of the quadrupole- and dipole-bound anions are measured as 18 and 115 meV, respectively, both of which are in excellent agreement with theoretical calculations by Sommerfeld.
  2. Despite its importance in electron transfer reactions and radiation chemistry, there has been disagreement over the fundamental nature of the hydrated electron, such as whether or not it resides in a cavity. Mixed quantum/classical simulations of the hydrated electron give different structures depending on the pseudopotential employed, and ab initio models of computational necessity use small numbers of water molecules and/or provide insufficient statistics to compare to experimental observables. A few years ago, Kumar et al. (J. Phys. Chem. A 2015, 119, 9148) proposed a minimalist ab initio model of the hydrated electron with only a small number of explicitly treated water molecules plus a polarizable continuum model (PCM). They found that the optimized geometry had four waters arranged tetrahedrally around a central cavity, and that the calculated vertical detachment energy and radius of gyration agreed well with experiment, results that were largely independent of the level of theory employed. The model, however, is based on a fixed structure at 0 K and does not explicitly incorporate entropic contributions or the thermal fluctuations that should be associated with the room-temperature hydrated electron. Thus, in this paper, we extend the model of Kumar et al. by running Born−Oppenheimer molecular dynamics (BOMD)more »of a small number of water molecules with an excess electron plus PCM at room temperature. We find that when thermal fluctuations are introduced, the level of theory chosen becomes critical enough when only four waters are used that one of the waters dissociates from the cluster with certain density functionals. Moreover, even with an optimally tuned range-separated hybrid functional, at room temperature the tetrahedral orientation of the 0 K first-shell waters is entirely lost and the central cavity collapses, a process driven by the fact that the explicit water molecules prefer to make H-bonds with each other more than with the excess electron. The resulting average structure is quite similar to that produced by a noncavity mixed quantum/classical model, so that the minimalist 4-water BOMD models suffer from problems similar to those of noncavity models, such as predicting the wrong sign of the hydrated electron’s molar solvation volume. We also performed BOMD with 16 explicit water molecules plus an extra electron and PCM. We find that the inclusion of an entire second solvation shell of explicit water leads to little change in the outcome from when only four waters were used. In fact, the 16-water simulations behave much like those of water cluster anions, in which the electron localizes at the cluster surface, showing that PCM is not acceptable for use in minimalist models to describe the behavior of the bulk hydrated electron. For both the 4- and 16-water models, we investigate how the introduction of thermal motions alters the predicted absorption spectrum, vertical detachment energy, and resonance Raman spectrum of the simulated hydrated electron. We also present a set of structural criteria that can be used to numerically determine how cavity-like (or not) a particular hydrated electron model is. All of the results emphasize that the hydrated electron is a statistical object whose properties are inadequately captured using only a small number of explicit waters, and that a proper treatment of thermal fluctuations is critical to understanding the hydrated electron’s chemical and physical behavior.« less
  3. Abstract A one-electron model Hamiltonian is used to characterize the non-valence correlation-bound (NVCB) anions of hexagonal polycyclic aromatic hydrocarbons (PAHs) C 6 n 2 H 6 n ( n = 3–7). The model incorporates atomic electrostatic moments up to the quadrupole, coupled inducible charges and dipoles, and atom-centered repulsive Gaussians to describe the interaction between the excess electron and PAH. These model components are parameterized on and validated against all-electron calculations. Good agreement is found between the static dipole polarizabilities obtained from the model and those from PBE0 density functional theory and second-order Møller–Plesset perturbation theory calculations. In the model, charge flow dominates the in-plane polarizability of PAHs larger than C 54 H 18 , yielding an approximately quadratic scaling of the mean polarizabilty with the number of carbon atoms. Inclusion of electrostatic interactions decreases the electron binding energies for the largest PAHs considered by about 20% and shift charge distribution from above and below the plane of the ring system toward the periphery. Analysis of the electrostatic and polarization interactions provides insight into qualitative trends in the electron binding energy and the charge distribution of the lowest energy NVCB anion.
  4. Soft anions exhibit surface activity at the air/water interface that can be probed using surface-sensitive vibrational spectroscopy, but the structural implications of this surface activity remain a matter of debate. Here, we examine the nature of anion–water interactions at the air/water interface using a combination of molecular dynamics simulations and quantum-mechanical energy decomposition analysis based on symmetry-adapted perturbation theory. Results are presented for a set of monovalent anions, including Cl−, Br−, I−, CN−, OCN−, SCN−, NO2−, NO3−, and ClOn− (n=1,2,3,4), several of which are archetypal examples of surface-active species. In all cases, we find that average anion–water interaction energies are systematically larger in bulk water although the difference (with respect to the same quantity computed in the interfacial environment) is well within the magnitude of the instantaneous fluctuations. Specifically for the surface-active species Br−(aq), I−(aq), ClO4−(aq), and SCN−(aq), and also for ClO−(aq), the charge-transfer (CT) energy is found to be larger at the interface than it is in bulk water, by an amount that is greater than the standard deviation of the fluctuations. The Cl−(aq) ion has a slightly larger CT energy at the interface, but NO3−(aq) does not; these two species are borderline cases where consensus is lacking regardingmore »their surface activity. However, CT stabilization amounts to <20% of the total induction energy for each of the ions considered here, and CT-free polarization energies are systematically larger in bulk water in all cases. As such, the role of these effects in the surface activity of soft anions remains unclear. This analysis complements our recent work suggesting that the short-range solvation structure around these ions is scarcely different at the air/water interface from what it is in bulk water. Together, these observations suggest that changes in first-shell hydration structure around soft anions cannot explain observed surface activities.« less
  5. We have prepared the hydrogen sulfide trimer and tetramer anions, (H 2 S) 3 − and (H 2 S) 4 − , measured their anion photoelectron spectra, and applied high-level quantum chemical calculations to interpret the results. The sharp peaks at low electron binding energies in their photoelectron spectra and their diffuse Dyson orbitals are evidence for them both being dipole-bound anions. While the dipole moments of the neutral (H 2 S) 3 and (H 2 S) 4 clusters are small, the excess electron induces structural distortions that enhance the charge-dipolar attraction and facilitate the binding of diffuse electrons.