skip to main content


Title: Deep multiple instance learning classifies subtissue locations in mass spectrometry images from tissue-level annotations
Motivation: Mass spectrometry imaging (MSI) characterizes the molecular composition of tissues at spatial resolution, and has a strong potential for distinguishing tissue types, or disease states. This can be achieved by supervised classification, which takes as input MSI spectra, and assigns class labels to subtissue locations. Unfortunately, developing such classifiers is hindered by the limited availability of training sets with subtissue labels as the ground truth. Subtissue labeling is prohibitively expensive, and only rough annotations of the entire tissues are typically available. Classifiers trained on data with approximate labels have sub-optimal performance. Results: To alleviate this challenge, we contribute a semi-supervised approach mi-CNN. mi-CNN implements multiple instance learning with a convolutional neural network (CNN). The multiple instance aspect enables weak supervision from tissue-level annotations when classifying subtissue locations. The convolutional architecture of the CNN captures contextual dependencies between the spectral features. Evaluations on simulated and experimental datasets demonstrated that mi-CNN improved the subtissue classification as compared to traditional classifiers. We propose mi-CNN as an important step towards accurate subtissue classification in MSI, enabling rapid distinction between tissue types and disease states.  more » « less
Award ID(s):
1759736
NSF-PAR ID:
10159354
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of Intelligent Systems for Molecular Biology (ISMB)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mass spectrometry imaging (MSI) is widely used for the label-free molecular mapping of biological samples. The identification of co-localized molecules in MSI data is crucial to the understanding of biochemical pathways. One of key challenges in molecular colocalization is that complex MSI data are too large for manual annotation but too small for training deep neural networks. Herein, we introduce a self-supervised clustering approach based on contrastive learning, which shows an excellent performance in clustering of MSI data. We train a deep convolutional neural network (CNN) using MSI data from a single experiment without manual annotations to effectively learn high-level spatial features from ion images and classify them based on molecular colocalizations. We demonstrate that contrastive learning generates ion image representations that form well-resolved clusters. Subsequent self-labeling is used to fine-tune both the CNN encoder and linear classifier based on confidently classified ion images. This new approach enables autonomous and high-throughput identification of co-localized species in MSI data, which will dramatically expand the application of spatial lipidomics, metabolomics, and proteomics in biological research. 
    more » « less
  2. This paper presents a unified framework to learn to quantify perceptual attributes (e.g., safety, attractiveness) of physical urban environments using crowd-sourced street-view photos without human annotations. The efforts of this work include two folds. First, we collect a large-scale urban image dataset in multiple major cities in U.S.A., which consists of multiple street-view photos for every place. Instead of using subjective annotations as in previous works, which are neither accurate nor consistent, we collect for every place the safety score from government’s crime event records as objective safety indicators. Second, we observe that the place-centric perception task is by nature a multi-instance regression problem since the labels are only available for places (bags), rather than images or image regions (instances). We thus introduce a deep convolutional neural network (CNN) to parameterize the instance-level scoring function, and develop an EM algorithm to alternatively estimate the primary instances (images or image regions) which affect the safety scores and train the proposed network. Our method is capable of localizing interesting images and image regions for each place.We evaluate the proposed method on a newly created dataset and a public dataset. Results with comparisons showed that our method can clearly outperform the alternative perception methods and more importantly, is capable of generating region-level safety scores to facilitate interpretations of the perception process. 
    more » « less
  3. In the era of big data, data-driven based classification has become an essential method in smart manufacturing to guide production and optimize inspection. The industrial data obtained in practice is usually time-series data collected by soft sensors, which are highly nonlinear, nonstationary, imbalanced, and noisy. Most existing soft-sensing machine learning models focus on capturing either intra-series temporal dependencies or pre-defined inter-series correlations, while ignoring the correlation between labels as each instance is associated with multiple labels simultaneously. In this paper, we propose a novel graph based soft-sensing neural network (GraSSNet) for multivariate time-series classification of noisy and highly-imbalanced soft-sensing data. The proposed GraSSNet is able to 1) capture the inter-series and intra-series dependencies jointly in the spectral domain; 2) exploit the label correlations by superimposing label graph that built from statistical co-occurrence information; 3) learn features with attention mechanism from both textual and numerical domain; and 4) leverage unlabeled data and mitigate data imbalance by semi-supervised learning. Comparative studies with other commonly used classifiers are carried out on Seagate soft sensing data, and the experimental results validate the competitive performance of our proposed method. 
    more » « less
  4. Abstract Motivation

    Genome-wide maps of epigenetic modifications are powerful resources for non-coding genome annotation. Maps of multiple epigenetics marks have been integrated into cell or tissue type-specific chromatin state annotations for many cell or tissue types. With the increasing availability of multiple chromatin state maps for biologically similar samples, there is a need for methods that can effectively summarize the information about chromatin state annotations within groups of samples and identify differences across groups of samples at a high resolution.

    Results

    We developed CSREP, which takes as input chromatin state annotations for a group of samples. CSREP then probabilistically estimates the state at each genomic position and derives a representative chromatin state map for the group. CSREP uses an ensemble of multi-class logistic regression classifiers that predict the chromatin state assignment of each sample given the state maps from all other samples. The difference in CSREP’s probability assignments for the two groups can be used to identify genomic locations with differential chromatin state assignments. Using groups of chromatin state maps of a diverse set of cell and tissue types, we demonstrate the advantages of using CSREP to summarize chromatin state maps and identify biologically relevant differences between groups at a high resolution.

    Availability and implementation

    The CSREP source code and generated data are available at http://github.com/ernstlab/csrep.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract

    Advances in both hardware and software are enabling rapid proliferation of in situ plankton imaging methods, requiring more effective machine learning approaches to image classification. Deep Learning methods, such as convolutional neural networks (CNNs), show marked improvement over traditional feature‐based supervised machine learning algorithms, but require careful optimization of hyperparameters and adequate training sets. Here, we document some best practices in applying CNNs to zooplankton and marine snow images and note where our results differ from contemporary Deep Learning findings in other domains. We boost the performance of CNN classifiers by incorporating metadata of different types and illustrate how to assimilate metadata beyond simple concatenation. We utilize both geotemporal (e.g., sample depth, location, time of day) and hydrographic (e.g., temperature, salinity, chlorophylla) metadata and show that either type by itself, or both combined, can substantially reduce error rates. Incorporation of context metadata also boosts performance of the feature‐based classifiers we evaluated: Random Forest, Extremely Randomized Trees, Gradient Boosted Classifier, Support Vector Machines, and Multilayer Perceptron. For our assessments, we use an original data set of 350,000 in situ images (roughly 50% marine snow and 50% non‐snow sorted into 26 categories) from a novel in situZooglider. We document asymptotically increasing performance with more computationally intensive techniques, such as substantially deeper networks and artificially augmented data sets. Our best model achieves 92.3% accuracy with our 27‐class data set. We provide guidance for further refinements that are likely to provide additional gains in classifier accuracy.

     
    more » « less