skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Influence of Smart Manufacturing Towards Energy Conservation: A Review
Today, the current trends of manufacturing are towards the adaptation and implementation of smart manufacturing, which is a new initiative to turn the traditional factories into profitable innovation facilities. However, the concept and technologies are still in a state of infancy, since many manufacturers around the world are not fully knowledgeable about the benefits of smart manufacturing compared to their current practices. This article reviews several aspects of smart manufacturing and introduces its advantages in terms of energy-saving and production efficiency. This article also points out that some areas need further research so that smart manufacturing can be shaped better.  more » « less
Award ID(s):
1801120
PAR ID:
10159458
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Technologies
Volume:
8
Issue:
2
ISSN:
2227-7080
Page Range / eLocation ID:
31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Manufacturing continues to be a vital component of the Ohio economy. Ohio’s manufacturing sector employs over 600,000 skilled individuals, the third-largest manufacturing workforce in the U.S. [1]. With additional manufacturing industries moving into Ohio, including Intel and its supply chain partners, there is a growing need for industry-ready, skilled engineering technicians. In addition, with the increasing use of automated systems and network connectivity of these systems in manufacturing operations, technicians need to be equipped with skills in the area of smart manufacturing. This article details the development of a Smart Manufacturing Technology (SMT) associate’s degree that is modeled as an earnand- learn program. The program is equipped with various experiential learning opportunities, and additional industry-recognized certifications are embedded within specific courses. Summer camps were designed and delivered to expose middle and high school students to smart manufacturing and to build a pipeline of students into this program. A professional development summit was delivered each year of the grant. The purpose of the summit was to increase high school instructors’ awareness of smart manufacturing so that they can better advise students about this in-demand field and teach courses in the SMT pathway. 
    more » « less
  2. Advanced sensing and cloud systems propel the rapid advancements of service-oriented smart manufacturing. As a result, there is widespread generation and proliferation of data in the interest of manufacturing analytics. The sheer amount and velocity of data have also attracted a myriad of malicious parties, unfortunately resulting in an elevated prevalence of cyber-attacks whose impacts are only gaining in severity. Therefore, this article presents a new distributed cryptosystem for analytical computing on encrypted data in the manufacturing environment, with a case study on manufacturing resource planning. This framework harmonizes Paillier cryptography with the Alternating Direction Method of Multipliers (ADMM) for decentralized computation on encrypted data. Security analysis shows that the proposed Paillier-ADMM system is resistant to attacks from external threats, as well as privacy breaches from trusted-but-curious third parties. Experimental results show that smart allocation is more cost-effective than the benchmarked deterministic and stochastic policies. The proposed distributed cryptosystem shows strong potential to leverage the distributed data for manufacturing intelligence, while reducing the risk of data breaches. 
    more » « less
  3. Abstract Industry 4.0 drives exponential growth in the amount of operational data collected in factories. These data are commonly distributed and stored in different business units or cooperative companies. Such data-rich environments increase the likelihood of cyber attacks, privacy breaches, and security violations. Also, this poses significant challenges on analytical computing on sensitive data that are distributed among different business units. To fill this gap, this article presents a novel privacy-preserving framework to enable federated learning on siloed and encrypted data for smart manufacturing. Specifically, we leverage fully homomorphic encryption (FHE) to allow for computation on ciphertexts and generate encrypted results that, when decrypted, match the results of mathematical operations performed on the plaintexts. Multilayer encryption and privacy protection reduce the likelihood of data breaches while maintaining the prediction performance of analytical models. Experimental results in real-world case studies show that the proposed framework yields superior performance to reduce the risk of cyber attacks and harness siloed data for smart manufacturing. 
    more » « less
  4. Programs in deploying Smart Manufacturing technologies have been under development in Germany, European Union, and Korea since 2011. This paper investigates the current status of Smart Manufacturing in the United States, and the trends in its technologies such as Industrial Internet of Things and artificial intelligence in standardized industrial robotics. In many other industrial countries, in particular, in East Asia, clear government policies and strategies exist that provide guidance and orient funding towards SM technologies, such as the “Made in China 2025” industrial policy and the Korean “Manufacturing Innovation 3.0” strategy. Although many efforts exist in the U.S. on the academic and industrial levels, that aim at increasing SM utilization, the efforts remain mostly isolated, and driven by the private sector without a clear guiding policy. 
    more » « less
  5. The necessity for educational programs in advanced manufacturing became prominent during the economic crisis in 2007 when the demand of industrial plants was for already trained highly-skilled laborers. To respond to this demand, many advanced manufacturing educational pro-grams, such as mechatronics, were developed in community and technical colleges. Since it was officially defined in the United States Congress in 2015, Smart Manufacturing (SM) has increasingly been under the spotlight. However, current efforts in deploying SM technologies in the US do not provide a workforce trained to utilize and perform SM technologies and techniques. Graduates of mechatronics and other advanced manufacturing programs remain mostly unaware of the technologies of Smart Manufacturing, such as Internet of Things (IoT) and Cyber Physical Systems (CPS), Industry 4.0 standards, and the capacity and range of applications of additive manufacturing and high-precision subtractive manufacturing technologies from tooling to end-user products. The programs currently available do not provide workforce training on SM technologies that target community and technical colleges, which supply a significant percentage of the industrial workforce. In the project Smart Manufacturing for America’s Revolutionizing Technological Transformation (SMART2), this gap in workforce training is met by providing the needed training to career technical education (CTE) and STEM educators in mechatronics and engineering technology. This project is a collaborative effort among three institutions and provides professional training for faculty of advanced manufacturing education programs and an online knowledge-base platform for educators and manufacturers, as well as on-ground training work-shops and educational modules. 
    more » « less