skip to main content


Title: Educating the Workforce in Cyber and Smart Manufacturing for Industry 4.0
The objective of this paper is to outline the details of a recently-funded National Science Foundation (NSF) Advanced Technological Education (ATE) project that aims to educate and enable the current and future manufacturing workforce to operate in an Industry 4.0 environment. Additionally, the startup procedures involved, the major ongoing activities during year-one, and preliminary impressions and lessons learned will be elaborated as well. Industry 4.0 refers to the ongoing reformation of advanced manufacturing (Operation Technologies - OT) enabled by advances in automation/data (Information Technologies - IT). Cyber-enabled smart manufacturing is a multidisciplinary approach that integrates the manufacturing process, its monitoring/control, data science, cyber-physical systems, and cloud computing to drive manufacturing operations. This is further propelled by the dissolution of boundaries separating IT and OT, presenting optimization opportunities not just at a machine-level, but at the plant/enterprise-levels. This so-called fourth industrial revolution is rapidly percolating the discrete and continuous manufacturing industry. It is therefore critical for the current and future US workforce to be cognizant and capable of such interdisciplinary domain knowledge and skills. To meet this workforce need, this project will develop curricula, personnel and communities in cyber-enabled smart manufacturing. The key project components will include: (i) Curriculum Road-Mapping and Implementation – one that integrates IT and OT to broaden the educational experience and employability via road-mapping workshops, and then to develop/implement curricula, (ii) Interdisciplinary Learning Experiences – through collaborative special-projects courses, industry internships and research experiences, (iii) Pathways to Industry 4.0 Careers – to streamline career pathways to enter Industry 4.0 careers, and to pursue further education, and (iv) Faculty Development – continuous improvement via professional development workshops and faculty development leaves. It is expected that this project will help define and chart-out the capabilities demanded from the next-generation workforce to fulfill the call of Industry 4.0, and the curricular ingredients necessary to train and empower them. This will help create an empowered workforce well-suited for Industry 4.0 careers in cyber-enabled smart manufacturing. The collaborative research team’s experience so far in starting up and establishing the project has further shed light on some of the essentials and practicalities needed for achieving the grand vision of enabling the manufacturing workforce for the future. Altogether, the experience and lessons learned during the year-one implementation has provided a better perception of what is needed for imparting a broader impact through this project.  more » « less
Award ID(s):
1903048
NSF-PAR ID:
10178926
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASEE annual conference exposition proceedings
ISSN:
2153-5868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The objective of this paper is to outline the details of a recently-funded National Science Foundation (NSF) Advanced Technological Education (ATE) project that aims to educate and enable the current and future manufacturing workforce to operate in an Industry 4.0 environment. Additionally, the startup procedures involved, the major ongoing activities during year-one, and preliminary impressions and lessons learned will be elaborated as well. Industry 4.0 refers to the ongoing reformation of advanced manufacturing (Operation Technologies - OT) enabled by advances in automation/data (Information Technologies - IT). Cyber-enabled smart manufacturing is a multidisciplinary approach that integrates the manufacturing process, its monitoring/control, data science, cyber-physical systems, and cloud computing to drive manufacturing operations. This is further propelled by the dissolution of boundaries separating IT and OT, presenting optimization opportunities not just at a machine-level, but at the plant/enterprise-levels. This so-called fourth industrial revolution is rapidly percolating the discrete and continuous manufacturing industry. It is therefore critical for the current and future US workforce to be cognizant and capable of such interdisciplinary domain knowledge and skills. To meet this workforce need, this project will develop curricula, personnel and communities in cyber-enabled smart manufacturing. The key project components will include: (i) Curriculum Road-Mapping and Implementation – one that integrates IT and OT to broaden the educational experience and employability via road-mapping workshops, and then to develop/implement curricula, (ii) Interdisciplinary Learning Experiences – through collaborative special-projects courses, industry internships and research experiences, (iii) Pathways to Industry 4.0 Careers – to streamline career pathways to enter Industry 4.0 careers, and to pursue further education, and (iv) Faculty Development – continuous improvement via professional development workshops and faculty development leaves. It is expected that this project will help define and chart-out the capabilities demanded from the next-generation workforce to fulfill the call of Industry 4.0, and the curricular ingredients necessary to train and empower them. This will help create an empowered workforce well-suited for Industry 4.0 careers in cyber-enabled smart manufacturing. The collaborative research team’s experience so far in starting up and establishing the project has further shed light on some of the essentials and practicalities needed for achieving the grand vision of enabling the manufacturing workforce for the future. Altogether, the experience and lessons learned during the year-one implementation has provided a better perception of what is needed for imparting a broader impact through this project. 
    more » « less
  2. Intelligent Autonomous Systems, including Intelligent Manufacturing & Automation and Industry 4.0, have immense potential to improve human health, safety, and welfare. Engineering these systems requires an interdisciplinary knowledge of mechanical, electrical, computer, software, and systems engineering throughout the design and development process. Mechatronics and Robotics Engineering (MRE) is emerging as a discipline that can provide the broad inter-disciplinary technical and professional skill sets that are critical to fulfill the research and development needs for these advanced systems. Despite experiencing tremendous, dynamic growth, MRE lacks a settled-on and agreed-upon body-of-knowledge, leading to unmet needs for standardized curricula, courses, laboratory platforms, and accreditation criteria, resulting in missed career opportunities for individuals and missed economic opportunities for industry. There have been many educational efforts around MRE, including courses, minors, and degree programs, but they have not been well integrated or widely adopted, especially in USA. To enable MRE to coalesce as a distinct and identifiable engineering field, the authors conducted four workshops on the Future of Mechatronics and Robotics Engineering (FoMRE) education at the bachelor’s degree level. The overall goal of the workshops was to improve the quality of undergraduate MRE education and to ease the adoption of teaching materials to prepare graduates with a blend of theoretical knowledge and practical hands-on skills. To realize this goal, the specific objectives were to generate enthusiasm and a sense of community among current and future MRE educators, promote diversity and inclusivity within the MRE community, identify thought leaders, and seek feedback from the community to serve as a foundation for future activities. The workshops were intended to benefit a wide range of participants including educators currently teaching or developing programs in MRE, PhD students seeking academic careers in MRE, and industry professionals desiring to shape the future workforce. Workshop activities included short presentations on sample MRE programs, breakout sessions on specific topics, and open discussion sessions. As a result of these workshops, the MRE educational community has been enlarged and engaged, with members actively contributing to the scholarship of teaching and learning. This paper presents the workshops’ formats, outcomes, results of participant surveys, and their analyses. A major outcome was identifying concept, skill, and experience inventories organized around the dimensions of foundational/practical/applications and student preparation/MRE knowledgebase. Particular attention is given to the extent to which the workshops realized the project goals, including attendee demographics, changes in participant attitudes, and development of the MRE community. The paper concludes with a summary of lessons learned and a call for future activities to shape the field. 
    more » « less
  3. The emerging convergence research emphasizes integrating knowledge, methods, and expertise from different disciplines and forming novel frameworks to catalyze scientific discovery and innovation, not only multidisciplinary, but interdisciplinary and further transdisciplinary. Mechatronics matches this new trend of convergence engineering research for deep integration across disciplines such as mechanics, electronics, control theory, robotics, and production manufacturing, and is also inspired by its active means of addressing a specific challenge or opportunity for societal needs. The most current applications of mechatronics in automotive are e-mobility (electric vehicles, EV) and connected and autonomous vehicles (CAV); in manufacturing are robotics and smart-factory; and in aerospace are drones, unmanned aerial vehicle (UAV), and advanced avionics. The growing mechatronics industries demand high quality workforces with multidiscipline knowledge and training. These workforces can come from the graduates of colleges and universities with updated curricula, or from labors returning to schools or taking new training programs. Graduate schools can prepare higher level workforces that can carry out fundamental research and explore new technologies in mechatronics. K-12 schools will also play an important role in fostering the next-decade workforces for all the STEM area. On the other hand, the development of mechatronics technologies improves the tools for teaching mechatronics as well. These new teaching tools include affordable microcontrollers and the peripherals such as Arduinos, and Raspberry Pi, desktop 3D printers, and virtual reality (VR). In this paper we present the working processes and activities of a current one-year ECR project funded by NSF organizing two workshops held by two institutes for improving workforce development environments specified in mechatronics. Each workshop is planned to be two days, where the first day will be dedicated to the topics of the current workforce situation in industry, the current pathways for workforces, conventional college and university workforce training, and K-12 STEM education preparation in mechatronics. The topics in the second day will be slightly different based on the expertise and locations of the two institutes. One will focus on the mechatronics technologies in production engineering for alternative energy and ground mobility, and the other will concentrate on aerospace, alternative energy, and the corresponding applications. Both workshops will also address the current technical development of teaching methods and tools for mechatronics. VR will be specially emphasized and demonstrated in the workshops if the facilities allow. Social impacts of mechatronics technology, expansion of diversity and participation of underrepresented groups will be discussed in the workshops. We expect to have the results of the workshops to present in the annual ASEE conference in June. 
    more » « less
  4. The Hispanic Serving Institution Advanced Technological Education Hub 2 (HSI ATE Hub 2) is a three-year collaborative research project funded by the National Science Foundation (NSF) that builds upon the successful outcomes of two mentoring and professional development (PD) programs in a pilot that translates foundational theory related to culturally responsive pedagogy into practice using a 3-tier scaffolded faculty PD model. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot, optimization, and dissemination of this model at 2-year Hispanic Serving Institutions (HSIs). The tiered PD model has been tested by two faculty cohorts at Westchester Community College (WCC), an HSI in the State University of New York (SUNY) system. In year one, Cohort A piloted the PD modules in Tier 1 which featured reflective exercises and small culturally responsive activities to try with their STEM students. In year two, Cohort A piloted the PD modules in Tier 2 and peer-mentored Cohort B as they piloted optimizations introduced to Tier 1 from Cohort A feedback. Three types of optimizations came from faculty feedback. The first considered feedback regarding delivery and/or nature of the content that influenced a subsequent module. The second involved making changes to a particular module before it was delivered to another faculty cohort. The third takes into account what worked and what didn’t to decide which content to bring into virtual webinars for the broader advanced technician education community. Dissemination of the tiered PD model has been achieved in annual webinars with the broader ATE community and at conferences for advanced technician educators to achieve broader impacts in the ATE Community. Longer term, providing professional development in culturally responsive pedagogy and practices can help existing and future faculty learn to productively engage their students in more inclusive ways. As faculty mindsets shift to asset-based thinking and a climate of mutual respect is developed, the learning environment for all students in technician education programs will improve. When students learn in a supportive environment, their chances for success increase. The professional development provided in the HSI ATE Hub 2 project will lead to longer term improvements in four ways: 1) Retainment of Culturally responsive practices by those directly engaged after the project ends; 2) Inserting top activities from the PD into national webinars to extend the reach of the training; 3) Strengthening grant proposals as faculty integrate culturally responsive strategies, knowledge and experience within their ATE proposals to the NSF; and 4) Meeting industry demand for a diverse technician workforce. This second paper in a three-part series describes ongoing progress and lessons learned in developing and piloting the 3-Tier PD model with two Cohorts of STEM faculty at a 2-year HSI. 
    more » « less
  5. The Hispanic Serving Institution Advanced Technological Education Hub 2 (HSI ATE Hub 2) is a three-year collaborative research project funded by the National Science Foundation (NSF) that builds upon the successful outcomes of two mentoring and professional development (PD) programs in a pilot that translates foundational theory related to culturally responsive pedagogy into practice using a 3-tier scaffolded faculty PD model. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot, optimization, and dissemination of this model at 2-year Hispanic Serving Institutions (HSIs). The tiered PD model has been tested by two faculty cohorts at Westchester Community College (WCC), an HSI in the State University of New York (SUNY) system. In year one, Cohort A piloted the PD modules in Tier 1 which featured reflective exercises and small culturally responsive activities to try with their STEM students. In year two, Cohort A piloted the PD modules in Tier 2 and peer-mentored Cohort B as they piloted optimizations introduced to Tier 1 from Cohort A feedback. Three types of optimizations came from faculty feedback. The first considered feedback regarding delivery and/or nature of the content that influenced a subsequent module. The second involved making changes to a particular module before it was delivered to another faculty cohort. The third takes into account what worked and what didn’t to decide which content to bring into virtual webinars for the broader advanced technician education community. Dissemination of the tiered PD model has been achieved in annual webinars with the broader ATE community and at conferences for advanced technician educators to achieve broader impacts in the ATE Community. Longer term, providing professional development in culturally responsive pedagogy and practices can help existing and future faculty learn to productively engage their students in more inclusive ways. As faculty mindsets shift to asset-based thinking and a climate of mutual respect is developed, the learning environment for all students in technician education programs will improve. When students learn in a supportive environment, their chances for success increase. The professional development provided in the HSI ATE Hub 2 project will lead to longer term improvements in four ways: 1) Retainment of Culturally responsive practices by those directly engaged after the project ends; 2) Inserting top activities from the PD into national webinars to extend the reach of the training; 3) Strengthening grant proposals as faculty integrate culturally responsive strategies, knowledge and experience within their ATE proposals to the NSF; and 4) Meeting industry demand for a diverse technician workforce. This second paper in a three-part series describes ongoing progress and lessons learned in developing and piloting the 3-Tier PD model with two Cohorts of STEM faculty at a 2-year HSI. 
    more » « less