We demonstrate a 2D lattice of blue-detuned optical traps which uses laser power efficiently, is tolerant to perturbations in beam alignment, and is insensitive to interferometric phases. Blue traps have several advantages over red traps despite requir- ing a more complicated beam geometry. Since atoms in a blue trap sit at an intensity minimum, Stark shift noise and site-to-site calibrations are minimized. However, constructing a blue lattice which efficiently con- verts laser power into trap depth, is challenging. For example, a lattice of bottle beams is inefficient because neighboring sites are separated by two walls, limiting the number of traps that can be formed. An array of tightly spaced Gaussian beams is a more efficient blue trap, but the trap potentials are susceptible to alignment perturbations. We demonstrate an array which uses diffractive optical elements to create a cross-hatched pattern of lines in the focal region where the atoms are trapped in up to 121 sites. This "line array" is almost twice as efficient as the Gaussian beam array and is more resilient to perturbations in beam alignment.
more »
« less
Emergent Periodic and Quasiperiodic Lattices on Surfaces of Synthetic Hall Tori and Synthetic Hall Cylinders
Synthetic spaces allow physicists to bypass constraints imposed by certain physical laws in experiments. Here, we show that a synthetic torus, which consists of a ring trap in the real space and internal states of ultracold atoms cyclically coupled by Laguerre-Gaussian Raman beams, could be threaded by a net effective magnetic flux through its surface—an impossible mission in the real space. Such a synthetic Hall torus gives rise to a periodic lattice in real dimensions, in which the periodicity of the density modulation of atoms fractionalizes that of the Hamiltonian. Correspondingly, the energy spectrum is featured by multiple bands grouping into clusters with nonsymmorphic-symmetry-protected band crossings in each cluster, leading to swaps of wave packets in Bloch oscillations. Our scheme allows physicists to glue two synthetic Hall tori such that localization may emerge in a quasicrystalline lattice. If the Laguerre-Gaussian Raman beams and ring traps were replaced by linear Raman beams and ordinary traps, a synthetic Hall cylinder could be realized and deliver many of the aforementioned phenomena.
more »
« less
- Award ID(s):
- 1806796
- PAR ID:
- 10159489
- Date Published:
- Journal Name:
- Physical review letters
- ISSN:
- 1079-7114
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Emergence of fundamental forces from gauge symmetry is among our most profound insights about the physical universe. In nature, such symmetries remain hidden in the space of internal degrees of freedom of subatomic particles. Here we propose a way to realize and study gauge structures in real space, manifest in external degrees of freedom of quantum states. We present a model based on a ring-shaped lattice potential, which allows for both Abelian and non-Abelian constructs. Non trivial Wilson loops are shown possible via physical motion of the system. The underlying physics is based on the close analogy of geometric phase with gauge potentials that has been utilized to create synthetic gauge fields with internal states of ultracold atoms. By scaling up to an array with spatially varying parameters, a discrete gauge field can be realized in position space, and its dynamics mapped over macroscopic size and time scales.more » « less
-
null (Ed.)Abstract Optical bottle beams can be used to trap atoms and small low-index particles. We introduce a figure of merit (FoM) for optical bottle beams, specifically in the context of optical traps, and use it to compare optical bottle-beam traps obtained by three different methods. Using this FoM and an optimization algorithm, we identified the optical bottle-beam traps based on a Gaussian beam illuminating a metasurface that are superior in terms of power efficiency than existing approaches. We numerically demonstrate a silicon metasurface for creating an optical bottle-beam trap.more » « less
-
Topological effects manifest in a variety of lattice geometries. While square lattices, due to their simplicity, have been used for models supporting nontrivial topology, several exotic topological phenomena such as Dirac points, Weyl points, and Haldane phases are most commonly supported by non-square lattices. Examples of prototypical non-square lattices include the honeycomb lattice of graphene and 2D materials, and the Kagome lattice, both of which break fundamental symmetries and can exhibit quantized transport, especially when long-range hoppings and gauge fields are incorporated. The challenge of controllably realizing such long-range hoppings and gauge fields has motivated a large body of research focused on harnessing lattices encoded in synthetic dimensions. Photons in particular have many internal degrees of freedom and hence show promise for implementing these synthetic dimensions; however, most photonic synthetic dimensions have hitherto created 1D or 2D square lattices. Here we show that non-square lattice Hamiltonians such as the Haldane model and its variations can be implemented using Floquet synthetic dimensions. Our construction uses dynamically modulated ring resonators and provides the capacity for directk-space engineering of lattice Hamiltonians. Thisk-space construction lifts constraints on the orthogonality of lattice vectors that make square geometries simpler to implement in lattice-space constructions and instead transfers the complexity to the engineering of tailored, complex Floquet drive signals. We simulate topological signatures of the Haldane and the brick-wall Haldane model and observe them to be robust in the presence of external optical drive and photon loss, and discuss unique characteristics of their topological transport when implemented on these Floquet lattices. Our proposal demonstrates the potential of driven-dissipative Floquet synthetic dimensions as a new architecture fork-space Hamiltonian simulation of high-dimensional lattice geometries, supported by scalable photonic integration, that lifts the constraints of several existing platforms for topological photonics and synthetic dimensions.more » « less
An official website of the United States government

