skip to main content


Title: An efficient 2D array of blue-detuned optical traps
We demonstrate a 2D lattice of blue-detuned optical traps which uses laser power efficiently, is tolerant to perturbations in beam alignment, and is insensitive to interferometric phases. Blue traps have several advantages over red traps despite requir- ing a more complicated beam geometry. Since atoms in a blue trap sit at an intensity minimum, Stark shift noise and site-to-site calibrations are minimized. However, constructing a blue lattice which efficiently con- verts laser power into trap depth, is challenging. For example, a lattice of bottle beams is inefficient because neighboring sites are separated by two walls, limiting the number of traps that can be formed. An array of tightly spaced Gaussian beams is a more efficient blue trap, but the trap potentials are susceptible to alignment perturbations. We demonstrate an array which uses diffractive optical elements to create a cross-hatched pattern of lines in the focal region where the atoms are trapped in up to 121 sites. This "line array" is almost twice as efficient as the Gaussian beam array and is more resilient to perturbations in beam alignment.  more » « less
Award ID(s):
1720220
NSF-PAR ID:
10064297
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Bulletin American Physical Society, DAMOP 2018
Volume:
63
Issue:
5
Page Range / eLocation ID:
T01 85
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present recent progress towards building a neutral atom quantum computer. We use a new design for a blue-detuned optical lattice to trap single Cs atoms. The lattice is created using a combination of diffractive elements and acousto-optic deflectors (AODs) which give a reconfigurable set of cross-hatched lines. By using AODs, we can vary the number of traps and size of the trapping regions as well as eliminate extraneous traps in Talbot planes. Since this trap uses blue-detuned light, it traps both ground state atoms and atoms excited to the Rydberg state; moreover, by tuning the size of the trapping region, we can make the traps “magic” for a selected Rydberg state. We use an optical tweezer beam for atom rearrangement. When loading atoms into the array, trap sites randomly contain zero or one atoms. Atoms are then moved between different trapping sites using a red-detuned optical tweezer. Optimal atom rearrangement is calculated using the “Hungarian Method”. These rearrangement techniques can be used to create defect-free sub-lattices. Lattice atoms can also be used as a reservoir for a set of selected sites. This allows quick replacement of atoms, and increased data rate, without reloading from a MOT. 
    more » « less
  2. We present recent progress towards building a neutral atom quantum computer. We use a new design for a blue-detuned optical lattice to trap single Cs atoms. The lattice is created using a combination of diffractive elements and acousto-optic deflectors (AODs) which give a reconfigurable set of cross-hatched lines. By using AODs, we can vary the number of traps and size of the trapping regions as well as eliminate extraneous traps in Talbot planes. Since this trap uses blue-detuned light, it traps both ground state atoms and atoms excited to the Rydberg state; moreover, by tuning the size of the trapping region, we can make the traps “magic” for a selected Rydberg state. We use an optical tweezer beam for atom rearrangement. When loading atoms into the array, trap sites randomly contain zero or one atoms. Atoms are then moved between different trapping sites using a red-detuned optical tweezer. Optimal atom rearrangement is calculated using the “Hungarian Method”. These rearrangement techniques can be used to create defect-free sub-lattices. Lattice atoms can also be used as a reservoir for a set of selected sites. This allows quick replacement of atoms, and increased data rate, without reloading from a MOT. 
    more » « less
  3. null (Ed.)
    Abstract Optical bottle beams can be used to trap atoms and small low-index particles. We introduce a figure of merit (FoM) for optical bottle beams, specifically in the context of optical traps, and use it to compare optical bottle-beam traps obtained by three different methods. Using this FoM and an optimization algorithm, we identified the optical bottle-beam traps based on a Gaussian beam illuminating a metasurface that are superior in terms of power efficiency than existing approaches. We numerically demonstrate a silicon metasurface for creating an optical bottle-beam trap. 
    more » « less
  4. We propose engineering optical traps over plasmonic surfaces and precisely controlling the trap position with an external bias by inducing in-plane nonreciprocity on the surface. The platform employs an incident Gaussian beam to polarize targeted nanoparticles, and exploits the interplay between nonreciprocal and spin-orbit lateral recoil forces to construct stable optical traps and manipulate their position within the surface. To model this process, we develop a theoretical framework based on the Lorentz force combined with nonreciprocal Green’s functions and apply it to calculate the trapping potential. Rooted on this formalism, we explore the exciting possibilities offered by graphene to engineer stable optical traps using low-power laser beams in the mid-IR and to manipulate the trap position in a continuous manner by applying a longitudinal drift bias. Nonreciprocal metasurfaces may open new possibilities to trap, assemble and manipulate nanoparticles and overcome many challenges faced by conventional optical tweezers while dealing with nanoscale objects.

     
    more » « less
  5. Synthetic spaces allow physicists to bypass constraints imposed by certain physical laws in experiments. Here, we show that a synthetic torus, which consists of a ring trap in the real space and internal states of ultracold atoms cyclically coupled by Laguerre-Gaussian Raman beams, could be threaded by a net effective magnetic flux through its surface—an impossible mission in the real space. Such a synthetic Hall torus gives rise to a periodic lattice in real dimensions, in which the periodicity of the density modulation of atoms fractionalizes that of the Hamiltonian. Correspondingly, the energy spectrum is featured by multiple bands grouping into clusters with nonsymmorphic-symmetry-protected band crossings in each cluster, leading to swaps of wave packets in Bloch oscillations. Our scheme allows physicists to glue two synthetic Hall tori such that localization may emerge in a quasicrystalline lattice. If the Laguerre-Gaussian Raman beams and ring traps were replaced by linear Raman beams and ordinary traps, a synthetic Hall cylinder could be realized and deliver many of the aforementioned phenomena. 
    more » « less