skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Material and circuit design for organic electronic vapor sensors and biosensors
We summarize our recent results on material, device, and circuit structures for detection of volatile analytes in the atmosphere and proteins in aqueous solution. Common to both types of sensing goals is the design of materials that respond more strongly to analytes of interest than to likely interferents, and the use of chemical and electronic amplification methods to increase the ratio of the desired responses to the drift (signal/noise ratio). Printable materials, especially polymers, are emphasized. Furthermore, the use of multiple sensing elements, typically field-effect transistors, increases the selectivity of the information, either by narrowing the classes of compounds providing the responses, distinguishing time-dependent from dose-dependent responses, and increasing the ratio of analyte responses to environmental drifts. To increase the stability of systems used to detect analytes in solution, we sometimes separate the sensing surface from the output device in an arrangement known as a remote gate. We show that the output device may be an organic-based or a silicon-based transistor, and can respond to electrochemical potential changes at the sensing surface arising from a variety of chemical interactions.  more » « less
Award ID(s):
1807292 1807293
PAR ID:
10159548
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proc. SPIE 11096, Organic and Hybrid Sensors and Bioelectronics XII, 110960A
Volume:
11096
Page Range / eLocation ID:
9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sensing complex gaseous mixtures and identifying their composition and concentration have the potential to achieve unprecedented improvements in environmental monitoring, medical diagnostics, industrial safety, and the food/agriculture industry. Electronically transduced chemical sensors capable of recognizing and differentiating specific target gases and transducing these chemical stimuli in a portable electronic device offer an opportunity for impact by bridging the utility of chemical information with global wireless connectivity. Among electronically transduced chemical sensors, chemiresistors stand out as particularly promising due to combined features of low-power requirements, room temperature operation, non-line-of-sight detection, high portability, and exceptional modularity. Relying on changes in resistance of a functional material triggered by variations in the surrounding chemical environment, these devices have achieved part-per-billion sensitivities of analytes by employing conductive polymers, graphene, carbon nanotubes (CNTs), metal oxides, metal nanoparticles, metal dichalcogenides, or MXenes as sensing materials. Despite these tremendous developments, the need for stable, selective, and sensitive chemiresistors demands continued innovation in material design in order to operate in complex mixtures with interferents as well as variations in humidity and temperature. To fill existing gaps in sensing capabilities, conductive metal−organic frameworks (MOFs) and covalent organic frameworks (COFs) have recently emerged as a promising class of materials for chemiresistive sensing. In contrast to previously reported chemiresistors, these materials offer at least three unique features for gas sensing applications: (i) bottom-up synthesis from molecularly precise precursors that allows for strategic control of material−analyte interactions, (ii) intrinsic conductivity that simultaneously facilitates charge transport and signal transduction under low power requirements, and (iii) high surface area that enables the accessibility of abundant active sites and decontamination of gas streams by coordinating to and, sometimes, detoxifying harmful analytes. Through an emphasis on molecular engineering of structure−property relationships in conductive MOFs and COFs, combined with strategic innovations in device integration strategies and device form factor (i.e., the physical dimensions and design of device components), our group has paved the way to demonstrating the multifunctional utility of these materials in the chemiresistive detection of gases and vapors. Backed by spectroscopic assessment of material−analyte interactions, we illustrated how molecular-level features lead to device performance in detection, filtration, and detoxification of gaseous analytes. By merging the bottom-up synthesis of these materials with device integration, we show the versatility and scalability of using these materials in low-power electronic sensing devices. Taken together, our achievements, combined with the progress spearheaded on this class of materials by other researchers, establish conductive MOFs and COFs as promising multifunctional materials for applications in electronically transduced, portable, low-power sensing devices. 
    more » « less
  2. Monolayers of Ti3C2Tx MXene and bilayer structures formed by partially overlapping monolayer flakes exhibit opposite sensing responses to a large scope of molecular analytes. When exposed to reducing analytes, monolayer MXene flakes show increased electrical conductivity, i.e., an n-type behavior, while bilayer structures become less conductive, exhibiting a p-type behavior. On the contrary, both monolayers and bilayers show unidirectional sensing responses with increased resistivity when exposed to oxidizing analytes. The sensing responses of Ti3C2Tx monolayers and bilayers are dominated by entirely different mechanisms. The sensing behavior of MXene monolayers is dictated by the charge transfer from adsorbed molecules and the response direction is consistent with the donor/acceptor properties of the analyte and the intrinsic n-type character of Ti3C2Tx. In contrast, the bilayer MXene structures always show the same response regardless of the donor/acceptor character of the analyte, and the resistivity always increases because of the intercalation of molecules between the Ti3C2Tx layers. This study explains the sensing behavior of bulk MXene sensors based on multiflake assemblies, in which this intercalation mechanism results in universal increase in resistance that for many analytes is seemingly inconsistent with the n-type character of the material. By scaling MXene sensors down from multiflake to single-flake level, we disentangled the charge transfer and intercalation effects and unraveled their contributions. In particular, we show that the charge transfer has a much faster kinetics than the intercalation process. Finally, we demonstrate that the layer-dependent gas sensing properties of MXenes can be employed for the design of sensor devices with enhanced molecular recognition. 
    more » « less
  3. Guiding analytes to the sensing area is an indispensable step in a sensing system. Most of the sensing systems apply a passive sensing method, which waits for the analytes to diffuse towards the sensor. However, passive sensing methods limit the detection of analytes to a picomolar range on micro/nanosensors for a practical time scale. Therefore, active sensing methods need to be used to improve the detection limit in which the analytes are forced to concentrate on the sensors. In this article, we have demonstrated the manufacturing of nanogap-rich structures for active chemical sensing. Nanogap-rich structures are manufactured from metallic nanoparticles through an optothermally generated microbubble (OGMB) which is a laser-induced micron-sized bubble. The OGMB induces a strong convective flow that helps to deposit metallic nanoparticles to form nanogap-rich structures on a solid surface. In addition, the OGMB is used to guide and concentrate analytes towards the nanogap-rich structures for the active sensing of analytes. An active sensing method can improve the detection limit of chemical substances by an order of magnitude compared to a passive sensing method. The microbubble assisted manufacturing of nanogap-rich structures together with an active analyte sensing method paves a new way for advanced chemical and bio-sensing applications. 
    more » « less
  4. Abstract Operational stability and sensitivity are key issues for the practical application of organic field‐effect‐transistor (OFET)‐based sensors. Instability over time due to intrinsic device bias stress and conductance drift induced by the ambient environment can obscure responses to analytes of interest. These instabilities are well‐known hindrances to the practical application of OFET sensors. It is demonstrated for the first time that an innovative and simple two‐OFET circuit design can effectively compensate the drifts originating from bias stress and/or the environment while maintaining chemical sensitivity and increasing signal‐to‐noise ratio. This is enabled by illumination of one photosensitive OFET to compensate the drift of the other chemical‐sensing OFET, though in principle a pair of OFETs with opposing drifts generated by any mechanism could be used. The circuit, compared with individual OFET‐based sensors, achieves significantly increased environmental stability, and its enhanced response to chemical vapors is also demonstrated by detecting the representative pollutants nitrogen dioxide (NO2) and ammonia (NH3). This shows that OEFTs with drifts being compensated by any mechanism can lead to stabilized sensor circuits. 
    more » « less
  5. Sensitive and selective detection of chemical and biological analytes is critical in various scientific and technological fields. As an emerging class of multifunctional materials, covalent organic frameworks (COFs) with their unique properties of chemical modularity, large surface area, high stability, low density, and tunable pore sizes and functionalities, which together define their programmable properties, show promise in advancing chemical detection. This review demonstrates the recent progress in chemical detection where COFs constitute an integral component of the achieved function. This review highlights how the unique properties of COFs can be harnessed to develop different types of chemical detection systems based on the principles of chromism, luminescence, electrical transduction, chromatography, spectrometry, and others to achieve highly sensitive and selective detection of various analytes, ranging from gases, volatiles, ions, to biomolecules. The key parameters of detection performance for target analytes are summarized, compared, and analyzed from the perspective of the detection mechanism and structure–property–performance correlations of COFs. Conclusions summarize the current accomplishments and analyze the challenges and limitations that exist for chemical detection under different mechanisms. Perspectives on how future directions of research can advance the COF-based chemical detection through innovation in novel COF design and synthesis, progress in device fabrication, and exploration of novel modes of detection are also discussed. 
    more » « less