An integrative taxonomic analysis of the 10 species of the Cyrtodactylus sinyineensis group based on squamation, color pattern, and the mitochondrial gene NADH dehydrogenase subunit 2 (ND2) and its flanking tRNA regions, recovered the newly discovered populations from Datt Kyaik and Taung Wine Hills in Kayin State as the new species Cyrtodactylus dattkyaikensis sp. nov. and C. taungwineensis sp. nov. The Maximum Likelihood and Bayesian phylogenetic estimates supported C. dattkyaikensis sp. nov. as the sister species of C. bayinnyiensis and C. taungwineensis sp. nov. as the sister species of C. sinyineensis. Each new species is differentially diagnosable from all other C. sinyineensis group species based on their morphological placement in multivariate space and several statistically significant mean differences is meristic squamation and color pattern data. The C. sinyineensis group ranges across an archipelago of karstic habitat-islands in the Salween Basin of southern Myanmar. The discovery of these new species continues to underscore the unprecedented high degree of diversity and site-specific endemism in this relatively small region and the urgent need for the conservation of its karstic terranes. 
                        more » 
                        « less   
                    
                            
                            A new potentially endangered limestone-associated Bent-toed Gecko of the Cyrtodactylus pulchellus (Squamata: Gekkonidae) complex from northern Peninsular Malaysia
                        
                    
    
            A survey of a limestone forest at Gunung Baling, Kedah, West Malaysia lead to the discovery of an undescribed species of Bent-toed Gecko from the Cyrtodactylus pulchellus complex. Cyrtodactylus evanquahi sp. nov. can be distinguished from all other species in the C. pulchellus complex by a suite of morphological and color pattern characteristics: prominent tuberculation, higher number of dark body bands, and a smaller maximum SVL. It is further differentiated from all other species as follows; no tubercles on the ventral surface of the forelimbs, gular region, or in the ventrolateral folds; 31–34 paravetebral dorsal tubercles; 18–23 longitudinal rows of tubercles; 29–33 ventral scales; 22–23 subdigital lamellae on the fourth toe; 32–36 femoroprecloacal pores; a shallow precloacal groove in males; body bands and nuchal loop edged with a thin white line bearing tubercles; no scattered white spots on the dorsum; six or seven dark body bands much thinner than interspaces; 9–11 dark caudal bands on original tail; bands on the original tail separated by immaculate white caudal bands. It is further differentiated by an uncorrected pairwise genetic divergence of 6.50–15.67% from all other congeners in the C. pulchellus complex. It is most closely related to C. pulchellus from Penang Island ∼76 km to the southwest. In addition to the new samples from Gunung Baling, we added four samples of C. bintangrendah from the new locality of Belukar Semang, Perak. The discovery of yet another new species of the C. pulchellus complex from a limestone habitat continues to underscore the high degree of endemism and the importance of these unique habitats for biodiversity, and the continued need for their conservation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1656004
- PAR ID:
- 10159579
- Date Published:
- Journal Name:
- Zootaxa
- Volume:
- 4751
- Issue:
- 3
- ISSN:
- 1175-5326
- Page Range / eLocation ID:
- 437-460
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Initially described in 1882, Chromis enchrysurus , the Yellowtail Reeffish, was redescribed in 1982 to account for an observed color morph that possesses a white tail instead of a yellow one, but morphological and geographic boundaries between the two color morphs were not well understood. Taking advantage of newly collected material from submersible studies of deep reefs and photographs from rebreather dives, this study sought to determine whether the white-tailed Chromis is actually a color morph of Chromis enchrysurus or a distinct species. Phylogenetic analyses of mitochondrial genes cytochrome b and cytochrome c oxidase subunit I separated Chromis enchrysurus and the white-tailed Chromis into two reciprocally monophyletic clades. A principal component analysis based on 27 morphological characters separated the two groups into clusters that correspond with caudal-fin coloration, which was either known or presumed based on the specimen’s collection site according to biogeographic data on species boundaries in the Greater Caribbean. Genetic, morphological, and biogeographic data all indicate that the white-tailed Chromis is a distinct species, herein described as Chromis vanbebberae sp. nov. The discovery of a new species within a conspicuous group such as damselfishes in a well-studied region of the world highlights the importance of deep-reef exploration in documenting undiscovered biodiversity.more » « less
- 
            Two new Phenacogrammus are described from the Ndzaa River, a small left-bank tributary of the Mfimi-Lukenie River in the central Congo basin. They share with P. deheyni, a congener endemic to the Cuvette Centrale to the north, a prominent anterior expansion of the first pleural rib; a feature interpreted here as a synapomorphy diagnostic for this species assemblage. The two new species are readily differentiated from P. deheyni based on differences in pigmentation patterning, a lower number of scales in longitudinal series (26–28 vs. 29–33) and a longer head length (m. 24.9% SL vs. 21.7 and 23.2% SL). Phenacogrammus flexus, new species, is distinguished from all congeners in the possession of 6 (vs. 7) supraneural bones, and a characteristic zigzag pattern of black pigmentation along and below the midline extending from the posterior border of the opercle to the base of the caudal peduncle. While no unambiguous morphological autapomorphies have been located to diagnose P. concolor, new species, it is nonetheless readily distinguished from all congeners, except P. deheyni and P. flexus, in the possession of a prominent anterior expansion of the first pleural rib. It differs from both P. deheyni and P. flexus in the absence of a dominant pigmentation patterning over the flanks and caudal peduncle. Additionally, it differs from P. flexus in a shallower body depth (m. 24.9% vs. 27.0% SL) and in the possession of 7 (vs. 6) supraneurals.more » « less
- 
            Caudal autotomy is a striking adaptation used by many lizard species to evade predators. Most studies to date indicate that caudal autotomy impairs lizard locomotor performance. Surprisingly, some species bearing the longest tails show negligible impacts of caudal autotomy on sprint speed. Part of this variation has been attributed to lineage effects. For the first time, we model the effects of caudal autotomy on the locomotor performance of a gymnophthalmid lizard, Micrablepharus atticolus, which has a long and bright blue tail. To improve model accuracy, we incorporated the effects of several covariates. We found that body temperature, pregnancy, mass, collection site, and the length of the regenerated portion of the tail were the most important predictors of locomotor performance. However, sprint speed was unaffected by tail loss. Apparently, the long tail of M. atticolus is more useful when using undulation amidst the leaf litter and not when using quadrupedal locomotion on a flat surface. Our findings highlight the intricate relationships among physiological, morphological, and behavioral traits. We suggest that future studies about the impacts of caudal autotomy among long-tailed lizards should consider the role of different microhabitats/substrates on locomotor performance, using laboratory conditions that closely mimic their natural environments.more » « less
- 
            Monitoring the impacts of global efforts to reduce mercury (Hg) emissions is limited by the collection of biological samples at appropriate spatiotemporal scales. This is especially true in the deep sea, a vast region with food webs that cycle bioaccumulative methylmercury (MeHg). Within a species, understanding the distribution of Hg across tissue types can reveal how Hg accumulates in the body and inform how useful a species is for biomonitoring geographic regions or vertical habitats of the ocean. We focus on a globally distributed deep-sea fish, the longnose lancetfish (Alepisaurus ferox, n = 69 individuals), and measure total mercury (THg) and MeHg concentrations in 10 tissue types (brain, caudal white muscle, dorsal white muscle, gallbladder, gill filament, gonad, heart, intestine, liver, and stomach lining). Across all tissue types, THg and MeHg concentrations were higher in large lancetfish (≥1.8 kg) than small lancetfish (<1.8 kg), but concentrations were relatively stable within size classes. THg levels were highest in liver, intestine, and heart, followed by caudal white muscle, dorsal white muscle, stomach lining, and gill filament, then by gonad and gallbladder. We describe how ontogenetic diet shifts explain Hg bioaccumulation in pelagic predators inhabiting similar waters to lancetfish. We hypothesize that diet shifts to deeper-dwelling prey and fishes drive increases in THg and MeHg concentrations in large lancetfish. We propose lancetfish as a strong candidate for monitoring spatiotemporal variability of Hg in the deep pelagic – they are commonly captured in global fisheries and may reflect Hg sources in two distinct vertical habitats of the ocean.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    