Many species exhibit color polymorphisms which have distinct physiological and behavioral characteristics. However, the consistency of morph trait covariation patterns across species, time, and ecological contexts remains unclear. This trait covariation is especially relevant in the context of invasion biology and urban adaptation. Specifically, physiological traits pertaining to energy maintenance are crucial to fitness, given their immediate ties to individual reproduction, growth, and population establishment. We investigated the physiological traits ofPodarcis muralis, a versatile color polymorphic species that thrives in urban environments (including invasive populations in Ohio, USA). We measured five physiological traits (plasma corticosterone and triglycerides, hematocrit, body condition, and field body temperature), which compose an integrated multivariate phenotype. We then tested variation among co‐occurring color morphs in the context of establishment in an urban environment. We found that the traits describing physiological status and strategy shifted across the active season in a morph‐dependent manner—the white and yellow morphs exhibited clearly different multivariate physiological phenotypes, characterized primarily by differences in plasma corticosterone. This suggests that morphs have different strategies in physiological regulation, the flexibility of which is crucial to urban adaptation. The white‐yellow morph exhibited an intermediate phenotype, suggesting an intermediary energy maintenance strategy. Orange morphs also exhibited distinct phenotypes, but the low prevalence of this morph in our study populations precludes clear interpretation. Our work provides insight into how differences among stable polymorphisms exist across axes of the phenotype and how this variation may aid in establishment within novel environments.
more »
« less
A new species of Chromis damselfish from the tropical western Atlantic (Teleostei, Pomacentridae)
Initially described in 1882, Chromis enchrysurus , the Yellowtail Reeffish, was redescribed in 1982 to account for an observed color morph that possesses a white tail instead of a yellow one, but morphological and geographic boundaries between the two color morphs were not well understood. Taking advantage of newly collected material from submersible studies of deep reefs and photographs from rebreather dives, this study sought to determine whether the white-tailed Chromis is actually a color morph of Chromis enchrysurus or a distinct species. Phylogenetic analyses of mitochondrial genes cytochrome b and cytochrome c oxidase subunit I separated Chromis enchrysurus and the white-tailed Chromis into two reciprocally monophyletic clades. A principal component analysis based on 27 morphological characters separated the two groups into clusters that correspond with caudal-fin coloration, which was either known or presumed based on the specimen’s collection site according to biogeographic data on species boundaries in the Greater Caribbean. Genetic, morphological, and biogeographic data all indicate that the white-tailed Chromis is a distinct species, herein described as Chromis vanbebberae sp. nov. The discovery of a new species within a conspicuous group such as damselfishes in a well-studied region of the world highlights the importance of deep-reef exploration in documenting undiscovered biodiversity.
more »
« less
- Award ID(s):
- 1701665
- PAR ID:
- 10294086
- Date Published:
- Journal Name:
- ZooKeys
- Volume:
- 1008
- ISSN:
- 1313-2989
- Page Range / eLocation ID:
- 107 to 138
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Chromodorididae family tree has been refined in recent years via molecular phylogenetic analyses which have clarified many relationships between taxa. The genus Goniobranchus is one clade within Chromodorididae that was previously included within the genus Chromodoris. However, based on recent molecular phylogenetic results, Chromodoris was determined to be non-monophyletic and Goniobranchus was resurrected. In this study, we performed molecular and morphological analyses to resolve the internal relationships among Goniobranchus species, specifically the red-reticulate species complex of three previously described species, Goniobranchus tinctorius, G. reticulatus, and G. alderi, which display a red network of lines over a white mantle and are widely distributed across the Indo-Pacific Ocean. We sequenced two mitochondrial genes (COI and 16S) and one nuclear gene (H3) for 339 Goniobranchus specimens, and in our phylogenetic analyses the red-reticulate species group emerged as a monophyly. This current work has indicated there are at least eleven distinct species within this species complex, including the only three previously described species and another described species, G. splendidus, was added to this clade. The molecular data and the morphological differences among species will be discussed, and we present a possible way forward to clarify the taxonomy of the red-reticulate species complex.more » « less
-
Abstract The ‘tooth-tailed’ scorpions of the buthid genus Odontobuthus comprises six species with an allopatric or parapatric pattern of distribution in the Middle East, but the diversity of Odontobuthus in Iran appears to be underestimated, with the limits of several species remaining unclear. In the present contribution, an integrative approach to the systematics of Odontobuthus was applied, to determine the taxonomic validity and phylogenetic relationships among its species. Statistical analyses of five meristic characters, 38 morphometric characters and 21 morphometric ratios, combined with molecular phylogenetic analyses of DNA sequences from the mitochondrial cytochrome c oxidase subunit I (COI) gene, were conducted. All previously described species of Odontobuthus were found to be well supported, and new morphological diagnoses are here presented. Additionally, three new species: Odontobuthus baluchicus sp. nov. from the Makkoran Mountains, Odontobuthus chabaharensis sp. nov. from the coast of the Gulf of Oman (Sistan and Baluchistan Provinces) and Odontobuthus kermanus sp. nov. from Kerman Province, are described, raising the total number of Odontobuthus species to nine, six of which are endemic or subendemic to the Iranian Plateau. A distribution map and identification key to the species of Odontobuthus are also provided.more » « less
-
null (Ed.)Background Madagascar is famous for its extremely rich biodiversity; the island harbors predominantly endemic and threatened communities meriting special attention from biodiversity scientists. Continuing ongoing efforts to inventory the Malagasy ant fauna, we revise the species currently placed in the myrmicine genus Aphaenogaster Mayr. One species described from Madagascar, Aphaenogaster friederichsi Forel, is synonymized with the Palearctic A. subterranea Latreille syn. nov. This species is considered neither native to Madagascar nor established in the region. This revision focuses on the balance of species in the A. swammerdami group which are all endemic to Madagascar. Methods The diversity of the Malagasy Aphaenogaster fauna was assessed via application of multiple lines of evidence involving quantitative morphometric, qualitative morphological, and DNA sequence data. (1) Morphometric investigation was based on hypothesis-free Nest Centroid clustering (NC-clustering) combined with PArtitioning based on Recursive Thresholding (PART) to estimate the number of morphological clusters and determine the most probable boundaries between them. This protocol provides a repeatable and testable approach to find patterns in continuous morphometric data. Species boundaries and the reliability of morphological clusters recognized by these exploratory analyses were tested via confirmatory Linear Discriminant Analysis (LDA). (2) Qualitative, external morphological characteristics (e.g., shape, coloration patterns, setae number) were subjectively evaluated in order to create a priori grouping hypotheses, and confirm and improve species delimitation. (3) Species delimitation analyses based on mitochondrial DNA sequences from cytochrome oxidase I (COI) gene fragments were carried out to test the putative species previously delimited by morphological and morphometric analyses. Results Five species can be inferred based on the integrated evaluation of multiple lines of evidence; of these, three are new to science: Aphaenogaster bressleri sp. n ., A. gonacantha (Emery, 1899), A. makay sp. n. , A. sahafina sp. n. , and A. swammerdami Forel, 1886. In addition, three new synonymies were found for A. swammerdami Forel, 1886 ( A. swammerdami clara Santschi, 1915 syn. n. , A. swammerdami curta Forel, 1891 syn. n. and A. swammerdami spinipes Santschi, 1911 syn. n. ). Descriptions and redefinitions for each taxon and an identification key for their worker castes using qualitative traits and morphometric data are given. Geographic maps depicting species distributions and biological information regarding nesting habits for the species are also provided.more » « less
-
Abstract Color polymorphic animals offer a unique system for studying intraspecific phenotypic responses to climate change. Discrete color morphs are easy to identify, and correlated trait responses of morphs can indicate how climate warming may facilitate long-term maintenance of polymorphisms. We use a historical dataset spanning 43 years to examine temporal shifts in color morph frequency and body size in response to climate in the Eastern Red-backed Salamander, Plethodon cinereus , which contains a widespread striped/unstriped color polymorphism. We created a pipeline to extract high-throughput trait data from fluid-preserved museum specimens where we batch-photographed salamanders, de-aggregated individual specimens from photographs, and solicited help of community scientists to score color morphs. We used a linear modeling framework that includes information about spatial population structure to demonstrate that color morph frequency and body size vary in response to climate, elevation, and over time, with an overall trend of higher frequency and decreased body size of the striped morph, but increased size of the unstriped morph. These surprising results suggest that morphs may be responding to multiple climate and geographic drivers through co-adapted morphological changes. This work highlights new practices of extracting trait data from museum specimens to demonstrate species phenotypes response to climate change.more » « less
An official website of the United States government

