skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Magnetic White Dwarf with Five Hα Components
G183−35 is an unusual white dwarf that shows an Hα line split into five components, instead of the usual three components seen in strongly magnetic white dwarfs. Potential explanations for the unusual set of lines includes a double degenerate system containing two magnetic white dwarfs and/or rotational modulation of a complex magnetic field structure. Here we present time-resolved spectroscopy of G183−35 obtained at the Gemini Observatory. These data reveal two sets of absorption lines that appear and disappear over a period of about 4 hours. We also detect low-level (0.2%) variability in optical photometry at the same period. We demonstrate that the spectroscopic and photometric variability can be explained by the presence of spots on the surface of the white dwarf and a change in the average field strength from about 4.6 MG to 6.2 MG. The observed variability is clearly due to G183−35’s relatively short spin period. However, rotational modulation of a complex magnetic field by itself cannot explain the changes seen in the central Hα component. An additional source of variability in the line profiles, most likely due to a chemically inhomogeneous surface composition, is also needed. We propose further observations of similar objects to test this scenario.  more » « less
Award ID(s):
1906379
PAR ID:
10159640
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Two recently discovered white dwarfs, WD J041246.84 + 754942.26 and WD J165335.21 − 100116.33, exhibit Hα and Hβ Balmer line emission similar to stars in the emerging DAHe class, yet intriguingly have not been found to have detectable magnetic fields. These white dwarfs are assigned the spectral type DAe. We present detailed follow-up of the two known DAe stars using new time-domain spectroscopic observations and analysis of the latest photometric time-series data from TESS and ZTF. We measure the upper magnetic field strength limit of both stars as B < 0.05 MG. The DAe white dwarfs exhibit photometric and spectroscopic variability, where in the case of WD J041246.84 + 754942.26 the strength of the Hα and Hβ emission cores varies in antiphase with its photometric variability over the spin period, which is the same phase relationship seen in DAHe stars. The DAe white dwarfs closely cluster in one region of the Gaia Hertzsprung–Russell diagram together with the DAHe stars. We discuss current theories on non-magnetic and magnetic mechanisms which could explain the characteristics observed in DAe white dwarfs, but additional data are required to unambiguously determine the origin of these stars. 
    more » « less
  2. Abstract We report the discovery of an isolated white dwarf with a spin period of 70 s. We obtained high-speed photometry of three ultramassive white dwarfs within 100 pc and discovered significant variability in one. SDSS J221141.80+113604.4 is a 1.27M(assuming a CO core) magnetic white dwarf that shows 2.9% brightness variations in the BG40 filter with a 70.32 ± 0.04 s period, becoming the fastest spinning isolated white dwarf currently known. A detailed model atmosphere analysis shows that it has a mixed hydrogen and helium atmosphere with a dipole field strength ofBd= 15 MG. Given its large mass, fast rotation, strong magnetic field, unusual atmospheric composition, and relatively large tangential velocity for its cooling age, J2211+1136 displays all of the signatures of a double white dwarf merger remnant. Long-term monitoring of the spin evolution of J2211+1136 and other fast-spinning isolated white dwarfs opens a new discovery space for substellar and planetary mass companions around white dwarfs. In addition, the discovery of such fast rotators outside of the ZZ Ceti instability strip suggests that some should also exist within the strip. Hence, some of the monoperiodic variables found within the instability strip may be fast-spinning white dwarfs impersonating ZZ Ceti pulsators. 
    more » « less
  3. Abstract The distribution of white dwarf rotation periods provides a means for constraining angular momentum evolution during the late stages of stellar evolution, as well as insight into the physics and remnants of double degenerate mergers. Although the rotational distribution of low-mass white dwarfs is relatively well constrained via asteroseismology, that of high-mass white dwarfs, which can arise from either intermediate-mass stellar evolution or white dwarf mergers, is not. Photometric variability in white dwarfs due to rotation of a spotted star is rapidly increasing the sample size of high-mass white dwarfs with measured rotation periods. We present the discovery of 22.4 minute photometric variability in the light curve of EGGR 156, a strongly magnetic, ultramassive white dwarf. We interpret this variability as rapid rotation, and our data suggest that EGGR 156 is the remnant of a double degenerate merger. Finally, we calculate the rate of period change in rapidly-rotating, massive, magnetic WDs due to magnetic dipole radiation. In many cases, including EGGR 156, the period change is not currently detectable over reasonable timescales, indicating that these WDs could be very precise clocks. For the most highly-magnetic, rapidly-rotating massive WDs, such as ZTF J1901+1450 and RE J0317−853, the period change should be detectable and may help constrain the structure and evolution of these exotic white dwarfs. 
    more » « less
  4. ABSTRACT We report the discovery of two apparently isolated stellar remnants that exhibit rotationally modulated magnetic Balmer emission, adding to the emerging DAHe class of white dwarf stars. While the previously discovered members of this class show Zeeman-split triplet emission features corresponding to single magnetic field strengths, these two new objects exhibit significant fluctuations in their apparent magnetic field strengths with variability phase. The Zeeman-split hydrogen emission lines in LP 705−64 broaden from 9.4 to 22.2 MG over an apparent spin period of 72.629 min. Similarly, WD J143019.29−562358.33 varies from 5.8  to 8.9 MG over its apparent 86.394 min rotation period. This brings the DAHe class of white dwarfs to at least five objects, all with effective temperatures within 500 K of 8000 K and masses ranging from $$0.65\,\,{\text{to}}\,\,0.83\, {\rm M}_{\odot }$$. 
    more » « less
  5. ABSTRACT We report the discovery of spectroscopic variations in the magnetic DBA white dwarf SDSS J091016.43+210554.2. Follow-up time-resolved spectroscopy at the Apache Point Observatory (APO) and the MMT show significant variations in the H absorption lines over a rotation period of 7.7 or 11.3 h. Unlike recent targets that show similar discrepancies in their H and He line profiles, such as GD 323 and Janus (ZTF J203349.8+322901.1), SDSS J091016.43+210554.2 is confirmed to be magnetic, with a field strength derived from Zeeman-split H and He lines of B ≈ 0.5 MG. Model fits using a H and He atmosphere with a constant abundance ratio across the surface fail to match our time-resolved spectra. On the other hand, we obtain excellent fits using magnetic atmosphere models with varying H/He surface abundance ratios. We use the oblique rotator model to fit the system geometry. The observed spectroscopic variations can be explained by a magnetic inhomogeneous atmosphere where the magnetic axis is offset from the rotation axis by β = 52°, and the inclination angle between the line of sight and the rotation axis is i = 13–16°. This magnetic white dwarf offers a unique opportunity to study the effect of the magnetic field on surface abundances. We propose a model where H is brought to the surface from the deep interior more efficiently along the magnetic field lines, thus producing H polar caps. 
    more » « less