The convective dredge-up of carbon from the interiors of hydrogen-deficient white dwarfs has long been invoked to explain the presence of carbon absorption features in the spectra of cool DQ stars ($T_{\rm eff} \lt 10\,000\,$K). It has been hypothesized that this transport process is not limited to DQ white dwarfs and also operates, albeit less efficiently, in non-DQ hydrogen-deficient white dwarfs within the same temperature range. This non-DQ population is predominantly composed of DC white dwarfs, which exhibit featureless optical spectra. However, no direct observational evidence of ubiquitous carbon pollution in DC stars has thus far been uncovered. In this Letter, we analyse data from the Galaxy Evolution Explorer to reveal the photometric signature of ultraviolet carbon lines in most DC white dwarfs in the $8500\, {\rm K} \le T_{\rm eff} \le 10\,500\,$K temperature range. Our results show that the vast majority of hydrogen-deficient white dwarfs experience carbon dredge-up at some point in their evolution.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
ABSTRACT We present our findings on the spectral analysis of seven magnetic white dwarfs that were presumed to be double degenerates. We obtained time-resolved spectroscopy at the Gemini Observatory to look for evidence of binarity or fast rotation. We find three of our targets have rotation periods of less than an hour based on the shifting positions of the Zeeman-split H α components: 13, 35, and 39 min, and we find one more target with a approximately an hour long period that is currently unconstrained. We use offset dipole models to determine the inclination, magnetic field strength, and dipole offset of each target. The average surface field strengths of our fast rotators vary by 1–2 MG between different spectra. In all cases, the observed absorption features are too shallow compared to our models. This could be due to extra flux from a companion for our three low-mass targets, but the majority of our sample likely requires an inhomogeneous surface composition. Including an additional magnetic white dwarf with similar properties presented in the literature, we find that five of the eight targets in this sample show field variations on minute/hour time-scales. A crystallization driven dynamo can potentially explain the magnetic fields in three of our targets with masses above 0.7 M⊙, but another mechanism is still needed to explain their rapid rotation. We suggest that rapid rotation or low-masses point to binary evolution as the likely source of magnetism in seven of these eight targets.
-
Abstract We present the results from our ongoing spectroscopic survey targeting low-mass white dwarf binaries, focusing on the southern sky. We used a Gaia DR2- and eDR3-based selection and identified 28 new binaries, including 19 new extremely low-mass (ELM) white dwarfs, one short period, likely eclipsing, DABZ, and two potential LISA binaries. We present the orbital and atmospheric parameters for each new binary based on our spectroscopic follow up. Four of our new binaries show periodic photometric variability in TESS 2 minutes cadence data, including one new eclipsing double-lined spectroscopic binary. Three others show periodic photometric variability in ZTF, including one new eclipsing binary. We provide estimates for the inclinations and scaled component radii for these ZTF variables, based on light-curve modeling of our high-speed photometric follow-up observations. Our observations have increased the sample of ELM Survey binaries identified in the southern sky to 41, an increase of 64%. Future time domain surveys, such as BlackGEM and the Vera C. Rubin Observatory Legacy Survey of Space and Time, will efficiently identify photometric variables in the southern sky and significantly increase the population of southern sky low-mass white dwarf binaries, leading to a more complete all-sky population of these systems.
-
ABSTRACT We present a detailed model atmosphere analysis of 14001 DA white dwarfs from the Montreal White Dwarf Database with ultraviolet photometry from the GALEX mission. We use the 100 pc sample, where the extinction is negligible, to demonstrate that there are no major systematic differences between the best-fitting parameters derived from optical only data and the optical + UV photometry. GALEX FUV and NUV data improve the statistical errors in the model fits, especially for the hotter white dwarfs with spectral energy distributions that peak in the UV. Fitting the UV to optical spectral energy distributions also reveals UV-excess or UV-deficit objects. We use two different methods to identify outliers in our model fits. Known outliers include objects with unusual atmospheric compositions, strongly magnetic white dwarfs, and binary white dwarfs, including double degenerates and white dwarf + main-sequence systems. We present a list of 89 newly identified outliers based on GALEX UV data; follow-up observations of these objects will be required to constrain their nature. Several current and upcoming large-scale spectroscopic surveys are targeting >105 white dwarfs. In addition, the ULTRASAT mission is planning an all-sky survey in the NUV band. A combination of the UV data from GALEX and ULTRASAT and optical data on these large samples of spectroscopically confirmed DA white dwarfs will provide an excellent opportunity to identify unusual white dwarfs in the solar neighbourhood.
-
ABSTRACT We present Apache Point Observatory (APO) and Gemini time-series photometry of WD J004917.14−252556.81, an ultramassive DA white dwarf with $T_{\rm eff} = 13\, 020$ K and log g = 9.34. We detect variability at two significant frequencies, making J0049−2525 the most massive pulsating white dwarf currently known with M⋆ = 1.31 M⊙ (for a CO core) or 1.26 M⊙ (for an ONe core). J0049−2525 does not display any of the signatures of binary mergers, there is no evidence of magnetism, large tangential velocity, or rapid rotation. Hence, it likely formed through single star evolution and is likely to have an ONe core. Evolutionary models indicate that its interior is ≳99 per cent crystallized. Asteroseismology offers an unprecedented opportunity to probe its interior structure. However, the relatively few pulsation modes detected limit our ability to obtain robust seismic solutions. Instead, we provide several representative solutions that could explain the observed properties of this star. Extensive follow-up time-series photometry of this unique target has the potential to discover a significant number of additional pulsation modes that would help overcome the degeneracies in the asteroseismic fits, and enable us to probe the interior of an ≈1.3 M⊙ crystallized white dwarf.
-
ABSTRACT We search for merger products among the 25 most massive white dwarfs in the Montreal White Dwarf Database 100 pc sample through follow-up spectroscopy and high-cadence photometry. We find an unusually high fraction, 40 per cent, of magnetic white dwarfs among this population. In addition, we identify four outliers in transverse velocity and detect rapid rotation in five objects. Our results show that $56^{+9}_{-10}$ per cent of the $M\approx 1.3\, {\rm M}_{\odot }$ ultramassive white dwarfs form through mergers. This fraction is significantly higher than expected from the default binary population synthesis calculations using the α prescription (with αλ = 2), and provides further support for efficient orbital shrinkage, such as with low values of the common-envelope efficiency.
-
Abstract We present the discovery of 17 double white dwarf (WD) binaries from our ongoing search for extremely low mass (ELM) < 0.3
M ⊙WDs, objects that form from binary evolution. Gaia parallax provides a new means of target selection that we use to evaluate our original ELM Survey selection criteria. Cross-matching the Gaia and Sloan Digital Sky Survey (SDSS) catalogs, we identify an additional 36 ELM WD candidates with 17 <g < 19 mag and within the 3σ uncertainties of our original color selection. The resulting discoveries imply the ELM Survey sample was 90% complete in the color range −0.4 < (g −r )0< −0.1 mag (approximately 9000 K <T eff< 22,000 K). Our observations complete the sample in the SDSS footprint. Two newly discovered binaries, J123950.370−204142.28 and J232208.733+210352.81, have orbital periods of 22.5 and 32 minutes, respectively, and are future Laser Interferometer Space Antenna gravitational-wave sources. -
ABSTRACT We present the results of a search for deeply eclipsing white dwarfs in the Zwicky Transient Facility (ZTF) Data Release 4 (DR4). We identify nine deeply eclipsing white dwarf candidates, four of which we followed up with high-cadence photometry and spectroscopy. Three of these systems show total eclipses in the ZTF data and our follow-up Apache Point Observatory 3.5 m telescope observations. Even though the eclipse duration is consistent with sub-stellar companions, our analysis shows that all four systems contain a white dwarf with low-mass stellar companions of ∼0.1 M⊙. We provide mass and radius constraints for both stars in each system based on our photometric and spectroscopic fitting. Finally, we present a list of 41 additional eclipsing WD+M candidates identified in a preliminary search of ZTF DR7, including 12 previously studied systems. We identify two new candidate short-period, eclipsing, white dwarf–brown dwarf binaries within our sample of 41 WD+M candidates based on Pan-STARRS colours.
-
Abstract We report the discovery of an isolated white dwarf with a spin period of 70 s. We obtained high-speed photometry of three ultramassive white dwarfs within 100 pc and discovered significant variability in one. SDSS J221141.80+113604.4 is a 1.27
M ⊙(assuming a CO core) magnetic white dwarf that shows 2.9% brightness variations in the BG40 filter with a 70.32 ± 0.04 s period, becoming the fastest spinning isolated white dwarf currently known. A detailed model atmosphere analysis shows that it has a mixed hydrogen and helium atmosphere with a dipole field strength ofB d = 15 MG. Given its large mass, fast rotation, strong magnetic field, unusual atmospheric composition, and relatively large tangential velocity for its cooling age, J2211+1136 displays all of the signatures of a double white dwarf merger remnant. Long-term monitoring of the spin evolution of J2211+1136 and other fast-spinning isolated white dwarfs opens a new discovery space for substellar and planetary mass companions around white dwarfs. In addition, the discovery of such fast rotators outside of the ZZ Ceti instability strip suggests that some should also exist within the strip. Hence, some of the monoperiodic variables found within the instability strip may be fast-spinning white dwarfs impersonating ZZ Ceti pulsators. -
A recent analysis of the 100 pc white dwarf sample in the SDSS footprint demonstrated for the first time the existence of a well defined ultracool -- or IR-faint -- white dwarf sequence in the Hertzsprung-Russell diagram. Here we take advantage of this discovery to enlarge the IR-faint white dwarf sample threefold. We expand our selection to the entire Pan-STARRS survey footprint as well as the Montreal White Dwarf Database 100 pc sample, and identify 37 candidates with strong flux deficits in the optical. We present follow-up Gemini optical spectroscopy of 30 of these systems, and confirm all of them as IR-faint white dwarfs. We identify an additional set of 33 objects as candidates based on their colors and magnitudes. We present a detailed model atmosphere analysis of all 70 newly identified IR-faint white dwarfs together with 35 previously known objects reported in the literature. We discuss the physics of model atmospheres and show that the key physical ingredient missing in our previous generation of model atmospheres was the high-density correction to the He-minus free-free absorption coefficient. With new model atmospheres calculated for the purpose of this analysis, we now obtain significantly higher effective temperatures and larger stellar masses for these IR-faint white dwarfs than the Teff and M values reported in previous analyses, thus solving a two decade old problem. In particular, we identify in our sample a group of ultramassive white dwarfs in the Debye cooling phase with stellar parameters never measured before.more » « less