skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Combining Deep Learning and Verification for Precise Object Instance Detection
Deep learning object detectors often return false positives with very high confidence. Although they optimize generic detection performance, such as mean average precision (mAP), they are not designed for reliability. For a re- liable detection system, if a high confidence detection is made, we would want high certainty that the object has indeed been detected. To achieve this, we have developed a set of verification tests which a proposed detection must pass to be accepted. We develop a theoretical framework which proves that, under certain assumptions, our verification tests will not accept any false positives. Based on an approximation to this framework, we present a practical detection system that can verify, with high precision, whether each detection of a machine-learning based object detector is correct. We show that these tests can improve the overall accu- racy of a base detector and that accepted examples are highly likely to be correct. This allows the detector to operate in a high precision regime and can thus be used for robotic perception systems as a reliable instance detection method.  more » « less
Award ID(s):
1849154
PAR ID:
10159659
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
100
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate 3D object detection in real-world environments requires a huge amount of annotated data with high quality. Acquiring such data is tedious and expensive, and often needs repeated effort when a new sensor is adopted or when the detector is deployed in a new environment. We investigate a new scenario to construct 3D object detectors: learning from the predictions of a nearby unit that is equipped with an accurate detector. For example, when a self-driving car enters a new area, it may learn from other traffic participants whose detectors have been optimized for that area. This setting is label-efficient, sensor-agnostic, and communication-efficient: nearby units only need to share the predictions with the ego agent (e.g., car). Naively using the received predictions as ground-truths to train the detector for the ego car, however, leads to inferior performance. We systematically study the problem and identify viewpoint mismatches and mislocalization (due to synchronization and GPS errors) as the main causes, which unavoidably result in false positives, false negatives, and inaccurate pseudo labels. We propose a distance-based curriculum, first learning from closer units with similar viewpoints and subsequently improving the quality of other units' predictions via self-training. We further demonstrate that an effective pseudo label refinement module can be trained with a handful of annotated data, largely reducing the data quantity necessary to train an object detector. We validate our approach on the recently released real-world collaborative driving dataset, using reference cars' predictions as pseudo labels for the ego car. Extensive experiments including several scenarios (e.g., different sensors, detectors, and domains) demonstrate the effectiveness of our approach toward label-efficient learning of 3D perception from other units' predictions. 
    more » « less
  2. Long-term object detection requires the integration of frame-based results over several seconds. For non-deformable objects, long-term detection is often addressed using object detection followed by video tracking. Unfortunately, tracking is inapplicable to objects that undergo dramatic changes in appearance from frame to frame. As a related example, we study hand detection over long video recordings in collaborative learning environments. More specifically, we develop long-term hand detection methods that can deal with partial occlusions and dramatic changes in appearance. Our approach integrates object-detection, followed by time projections, clustering, and small region removal to provide effective hand detection over long videos. The hand detector achieved average precision (AP) of 72% at 0.5 intersection over union (IoU). The detection results were improved to 81% by using our optimized approach for data augmentation. The method runs at 4.7× the real-time with AP of 81% at 0.5 intersection over the union. Our method reduced the number of false-positive hand detections by 80% by improving IoU ratios from 0.2 to 0.5. The overall hand detection system runs at 4× real-time. 
    more » « less
  3. null (Ed.)
    We propose CheckDP, an automated and integrated approach for proving or disproving claims that a mechanism is differentially private. CheckDP can find counterexamples for mechanisms with subtle bugs for which prior counterexample generators have failed. Furthermore, it was able to automatically generate proofs for correct mechanisms for which no formal verification was reported before. CheckDP is built on static program analysis, allowing it to be more efficient and precise in catching infrequent events than sampling based counterexample generators (which run mechanisms hundreds of thousands of times to estimate their output distribution). Moreover, its sound approach also allows automatic verification of correct mechanisms. When evaluated on standard benchmarks and newer privacy mechanisms, CheckDP generates proofs (for correct mechanisms) and counterexamples (for incorrect mechanisms) within 70 seconds without any false positives or false negatives. 
    more » « less
  4. As AI-based face recognition technologies are increasingly adopted for high-stakes applications like locating suspected criminals, public concerns about the accuracy of these technologies have grown as well. These technologies often present a human expert with a shortlist of high-confidence candidate faces from which the expert must select correct match(es) while avoiding false positives, which we term the “last-mile problem.” We propose Second Opinion, a web-based software tool that employs a novel crowdsourcing workflow inspired by cognitive psychology, seed-gather-analyze, to assist experts in solving the last-mile problem. We evaluated Second Opinion with a mixed-methods lab study involving 10 experts and 300 crowd workers who collaborate to identify people in historical photos. We found that crowds can eliminate 75% of false positives from the highest-confidence candidates suggested by face recognition, and that experts were enthusiastic about using Second Opinion in their work. We also discuss broader implications for crowd–AI interaction and crowdsourced person identification. 
    more » « less
  5. null (Ed.)
    Detecting software vulnerabilities is an important problem and a recent development in tackling the problem is the use of deep learning models to detect software vulnerabilities. While effective, it is hard to explain why a deep learning model predicts a piece of code as vulnerable or not because of the black-box nature of deep learning models. Indeed, the interpretability of deep learning models is a daunting open problem. In this article, we make a significant step toward tackling the interpretability of deep learning model in vulnerability detection. Specifically, we introduce a high-fidelity explanation framework, which aims to identify a small number of tokens that make significant contributions to a detector’s prediction with respect to an example. Systematic experiments show that the framework indeed has a higher fidelity than existing methods, especially when features are not independent of each other (which often occurs in the real world). In particular, the framework can produce some vulnerability rules that can be understood by domain experts for accepting a detector’s outputs (i.e., true positives) or rejecting a detector’s outputs (i.e., false-positives and false-negatives). We also discuss limitations of the present study, which indicate interesting open problems for future research. 
    more » « less