skip to main content

Title: Combining Deep Learning and Verification for Precise Object Instance Detection
Deep learning object detectors often return false positives with very high confidence. Although they optimize generic detection performance, such as mean average precision (mAP), they are not designed for reliability. For a re- liable detection system, if a high confidence detection is made, we would want high certainty that the object has indeed been detected. To achieve this, we have developed a set of verification tests which a proposed detection must pass to be accepted. We develop a theoretical framework which proves that, under certain assumptions, our verification tests will not accept any false positives. Based on an approximation to this framework, we present a practical detection system that can verify, with high precision, whether each detection of a machine-learning based object detector is correct. We show that these tests can improve the overall accu- racy of a base detector and that accepted examples are highly likely to be correct. This allows the detector to operate in a high precision regime and can thus be used for robotic perception systems as a reliable instance detection method.
Authors:
; ;
Award ID(s):
1849154
Publication Date:
NSF-PAR ID:
10159659
Journal Name:
Proceedings of Machine Learning Research
Volume:
100
ISSN:
2640-3498
Sponsoring Org:
National Science Foundation
More Like this
  1. Identifying people in photographs is a critical task in a wide variety of domains, from national security [7] to journalism [14] to human rights investigations [1]. The task is also fundamentally complex and challenging. With the world population at 7.6 billion and growing, the candidate pool is large. Studies of human face recognition ability show that the average person incorrectly identifies two people as similar 20–30% of the time, and trained police detectives do not perform significantly better [11]. Computer vision-based face recognition tools have gained considerable ground and are now widely available commercially, but comparisons to human performance show mixed results at best [2,10,16]. Automated face recognition techniques, while powerful, also have constraints that may be impractical for many real-world contexts. For example, face recognition systems tend to suffer when the target image or reference images have poor quality or resolution, as blemishes or discolorations may be incorrectly recognized as false positives for facial landmarks. Additionally, most face recognition systems ignore some salient facial features, like scars or other skin characteristics, as well as distinctive non-facial features, like ear shape or hair or facial hair styles. This project investigates how we can overcome these limitations to support person identificationmore »tasks. By adjusting confidence thresholds, users of face recognition can generally expect high recall (few false negatives) at the cost of low precision (many false positives). Therefore, we focus our work on the “last mile” of person identification, i.e., helping a user find the correct match among a large set of similarlooking candidates suggested by face recognition. Our approach leverages the powerful capabilities of the human vision system and collaborative sensemaking via crowdsourcing to augment the complementary strengths of automatic face recognition. The result is a novel technology pipeline combining collective intelligence and computer vision. We scope this project to focus on identifying soldiers in photos from the American Civil War era (1861– 1865). An estimated 4,000,000 soldiers fought in the war, and most were photographed at least once, due to decreasing costs, the increasing robustness of the format, and the critical events separating friends and family [17]. Over 150 years later, the identities of most of these portraits have been lost, but as museums and archives increasingly digitize and publish their collections online, the pool of reference photos and information has never been more accessible. Historians, genealogists, and collectors work tirelessly to connect names with faces, using largely manual identification methods [3,9]. Identifying people in historical photos is important for preserving material culture [9], correcting the historical record [13], and recognizing contributions of marginalized groups [4], among other reasons.« less
  2. Long-term object detection requires the integration of frame-based results over several seconds. For non-deformable objects, long-term detection is often addressed using object detection followed by video tracking. Unfortunately, tracking is inapplicable to objects that undergo dramatic changes in appearance from frame to frame. As a related example, we study hand detection over long video recordings in collaborative learning environments. More specifically, we develop long-term hand detection methods that can deal with partial occlusions and dramatic changes in appearance. Our approach integrates object-detection, followed by time projections, clustering, and small region removal to provide effective hand detection over long videos. The hand detector achieved average precision (AP) of 72% at 0.5 intersection over union (IoU). The detection results were improved to 81% by using our optimized approach for data augmentation. The method runs at 4.7× the real-time with AP of 81% at 0.5 intersection over the union. Our method reduced the number of false-positive hand detections by 80% by improving IoU ratios from 0.2 to 0.5. The overall hand detection system runs at 4× real-time.
  3. Usage of drones has increased substantially in both recreation and commercial applications and is projected to proliferate in the near future. As this demand rises, the threat they pose to both privacy and safety also increases. Delivering contraband and unauthorized surveillance are new risks that accompany the growth in this technology. Prisons and other commercial settings where venue managers are concerned about public safety need cost-effective detection solutions in light of their increasingly strained budgets. Hence, there arises a need to design a drone detection system that is low cost, easy to maintain, and without the need for expensive real-time human monitoring and supervision. To this end, this paper presents a low-cost drone detection system, which employs a Convolutional Neural Network (CNN) algorithm, making use of acoustic features. The Mel Frequency Cepstral Coefficients (MFCC) derived from audio signatures are fed as features to the CNN, which then predicts the presence of a drone. We compare field test results with an earlier Support Vector Machine (SVM) detection algorithm. Using the CNN yielded a decrease in the false positives and an increase in the correct detection rate.Previous tests showed that the SVM was particularly susceptible to false alarms for lawn equipment andmore »helicopters, which were significantly improved when using the CNN. Also,in order to determine how well such a system compared to human performance and also explore including the end-user in the detection loop, a human performance experiment was conducted.With a sample of 35 participants, the human classification accuracy was 92.47%. These preliminary results clearly indicate that humans are very good at identifying drone’s acoustic signatures from other sounds and can augment the CNN’s performance.« less
  4. Machine learning-based malware detection systems are often vulnerable to evasion attacks, in which a malware developer manipulates their malicious software such that it is misclassified as benign. Such software hides some properties of the real class or adopts some properties of a different class by applying small perturbations. A special case of evasive malware hides by repackaging a bonafide benign mobile app to contain malware in addition to the original functionality of the app, thus retaining most of the benign properties of the original app. We present a novel malware detection system based on metamorphic testing principles that can detect such benign-seeming malware apps. We apply metamorphic testing to the feature representation of the mobile app, rather than to the app itself. That is, the source input is the original feature vector for the app and the derived input is that vector with selected features removed. If the app was originally classified benign, and is indeed benign, the output for the source and derived inputs should be the same class, i.e., benign, but if they differ, then the app is exposed as (likely) malware. Malware apps originally classified as malware should retain that classification, since only features prevalent in benignmore »apps are removed. This approach enables the machine learning model to classify repackaged malware with reasonably few false negatives and false positives. Our training pipeline is simpler than many existing ML-based malware detection methods, as the network is trained end-to-end to jointly learn appropriate features and to perform classification. We pre-trained our classifier model on 3 million apps collected from the widely-used AndroZoo dataset. 1 We perform an extensive study on other publicly available datasets to show our approach’s effectiveness in detecting repackaged malware with more than 94% accuracy, 0.98 precision, 0.95 recall, and 0.96 F1 score.« less
  5. As AI-based face recognition technologies are increasingly adopted for high-stakes applications like locating suspected criminals, public concerns about the accuracy of these technologies have grown as well. These technologies often present a human expert with a shortlist of high-confidence candidate faces from which the expert must select correct match(es) while avoiding false positives, which we term the “last-mile problem.” We propose Second Opinion, a web-based software tool that employs a novel crowdsourcing workflow inspired by cognitive psychology, seed-gather-analyze, to assist experts in solving the last-mile problem. We evaluated Second Opinion with a mixed-methods lab study involving 10 experts and 300 crowd workers who collaborate to identify people in historical photos. We found that crowds can eliminate 75% of false positives from the highest-confidence candidates suggested by face recognition, and that experts were enthusiastic about using Second Opinion in their work. We also discuss broader implications for crowd–AI interaction and crowdsourced person identification.