skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gradient Dynamics of Shallow Univariate ReLU networks
We present a theoretical and empirical study of the gradient dynamics of overparam- eterized shallow ReLU networks with one-dimensional input, solving least-squares interpolation. We show that the gradient dynamics of such networks are determined by the gradient flow in a non-redundant parameterization of the network function. We examine the principal qualitative features of this gradient flow. In particular, we determine conditions for two learning regimes: kernel and adaptive, which depend both on the relative magnitude of initialization of weights in different layers and the asymptotic behavior of initialization coefficients in the limit of large network widths. We show that learning in the kernel regime yields smooth interpolants, minimizing curvature, and reduces to cubic splines for uniform initializations. Learning in the adaptive regime favors instead linear splines, where knots cluster adaptively at the sample points.  more » « less
Award ID(s):
1845360 1816753
PAR ID:
10159680
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study training one-hidden-layer ReLU networks in the neural tangent kernel (NTK) regime, where the networks' biases are initialized to some constant rather than zero. We prove that under such initialization, the neural network will have sparse activation throughout the entire training process, which enables fast training procedures via some sophisticated computational methods. With such initialization, we show that the neural networks possess a different limiting kernel which we call bias-generalized NTK, and we study various properties of the neural networks with this new kernel. We first characterize the gradient descent dynamics. In particular, we show that the network in this case can achieve as fast convergence as the dense network, as opposed to the previous work suggesting that the sparse networks converge slower. In addition, our result improves the previous required width to ensure convergence. Secondly, we study the networks' generalization: we show a width-sparsity dependence, which yields a sparsity-dependent Rademacher complexity and generalization bound. To our knowledge, this is the first sparsity-dependent generalization result via Rademacher complexity. Lastly, we study the smallest eigenvalue of this new kernel. We identify a data-dependent region where we can derive a much sharper lower bound on the NTK's smallest eigenvalue than the worst-case bound previously known. This can lead to improvement in the generalization bound. 
    more » « less
  2. Abstract We analyze the dynamics of finite width effects in wide but finite feature learning neural networks. Starting from a dynamical mean field theory description of infinite width deep neural network kernel and prediction dynamics, we provide a characterization of the O ( 1 / width ) fluctuations of the dynamical mean field theory order parameters over random initializations of the network weights. Our results, while perturbative in width, unlike prior analyses, are non-perturbative in the strength of feature learning. We find that once the mean field/µP parameterization is adopted, the leading finite size effect on the dynamics is to introduce initialization variance in the predictions and feature kernels of the networks. In the lazy limit of network training, all kernels are random but static in time and the prediction variance has a universal form. However, in the rich, feature learning regime, the fluctuations of the kernels and predictions are dynamically coupled with a variance that can be computed self-consistently. In two layer networks, we show how feature learning can dynamically reduce the variance of the final tangent kernel and final network predictions. We also show how initialization variance can slow down online learning in wide but finite networks. In deeper networks, kernel variance can dramatically accumulate through subsequent layers at large feature learning strengths, but feature learning continues to improve the signal-to-noise ratio of the feature kernels. In discrete time, we demonstrate that large learning rate phenomena such as edge of stability effects can be well captured by infinite width dynamics and that initialization variance can decrease dynamically. For convolutional neural networks trained on CIFAR-10, we empirically find significant corrections to both the bias and variance of network dynamics due to finite width. 
    more » « less
  3. We examine the implicit bias of mirror flow in least squares error regression with wide and shallow neural networks. For a broad class of potential functions, we show that mirror flow exhibits lazy training and has the same implicit bias as ordinary gradient flow when the network width tends to infinity. For univariate ReLU networks, we characterize this bias through a variational problem in function space. Our analysis includes prior results for ordinary gradient flow as a special case and lifts limitations which required either an intractable adjustment of the training data or networks with skip connections. We further introduce scaled potentials and show that for these, mirror flow still exhibits lazy training but is not in the kernel regime. For univariate networks with absolute value activations, we show that mirror flow with scaled potentials induces a rich class of biases, which generally cannot be captured by an RKHS norm. A takeaway is that whereas the parameter initialization determines how strongly the curvature of the learned function is penalized at different locations of the input space, the scaled potential determines how the different magnitudes of the curvature are penalized. 
    more » « less
  4. We examine the implicit bias of mirror flow in least squares error regression with wide and shallow neural networks. For a broad class of potential functions, we show that mirror flow exhibits lazy training and has the same implicit bias as ordinary gradient flow when the network width tends to infinity. For univariate ReLU networks, we characterize this bias through a variational problem in function space. Our analysis includes prior results for ordinary gradient flow as a special case and lifts limitations which required either an intractable adjustment of the training data or networks with skip connections. We further introduce scaled potentials and show that for these, mirror flow still exhibits lazy training but is not in the kernel regime. For univariate networks with absolute value activations, we show that mirror flow with scaled potentials induces a rich class of biases, which generally cannot be captured by an RKHS norm. A takeaway is that whereas the parameter initialization determines how strongly the curvature of the learned function is penalized at different locations of the input space, the scaled potential determines how the different magnitudes of the curvature are penalized. 
    more » « less
  5. We investigate gradient descent training of wide neural networks and the corresponding implicit bias in function space. For univariate regression, we show that the solution of training a width-n shallow ReLU network is within n−1/2 of the function which fits the training data and whose difference from the initial function has the smallest 2-norm of the second derivative weighted by a curvature penalty that depends on the probability distribution that is used to initialize the network parameters. We compute the curvature penalty function explicitly for various common initialization procedures. For instance, asymmetric initialization with a uniform distribution yields a constant curvature penalty, and thence the solution function is the natural cubic spline interpolation of the training data. For stochastic gradient descent we obtain the same implicit bias result. We obtain a similar result for different activation functions. For multivariate regression we show an analogous result, whereby the second derivative is replaced by the Radon transform of a fractional Laplacian. For initialization schemes that yield a constant penalty function, the solutions are polyharmonic splines. Moreover, we show that the training trajectories are captured by trajectories of smoothing splines with decreasing regularization strength. 
    more » « less