A test of lepton flavor universality in
This content will become publicly available on October 21, 2025
We analyze the dynamics of finite width effects in wide but finite feature learning neural networks. Starting from a dynamical mean field theory description of infinite width deep neural network kernel and prediction dynamics, we provide a characterization of the
- PAR ID:
- 10561215
- Publisher / Repository:
- IOP Publishing Ltd
- Date Published:
- Journal Name:
- Journal of Statistical Mechanics: Theory and Experiment
- Volume:
- 2024
- Issue:
- 10
- ISSN:
- 1742-5468
- Page Range / eLocation ID:
- 104021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract and decays, as well as a measurement of differential and integrated branching fractions of a nonresonant decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions to is determined from the measured double ratio of these decays to the respective branching fractions of the with and decays, which allow for significant cancellation of systematic uncertainties. The ratio is measured in the range , whereq is the invariant mass of the lepton pair, and is found to be , in agreement with the standard model expectation . This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq 2range, , is consistent with the present world-average value and has a comparable precision. -
Abstract We consider a process of noncolliding
q -exchangeable random walks on making steps 0 (‘straight’) and −1 (‘down’). A single random walk is calledq -exchangeable if under an elementary transposition of the neighboring steps the probability of the trajectory is multiplied by a parameter . Our process ofm noncollidingq -exchangeable random walks is obtained from the independentq -exchangeable walks via the Doob’sh -transform for a nonnegative eigenfunctionh (expressed via theq -Vandermonde product) with the eigenvalue less than 1. The system ofm walks evolves in the presence of an absorbing wall at 0. The repulsion mechanism is theq -analogue of the Coulomb repulsion of random matrix eigenvalues undergoing Dyson Brownian motion. However, in our model, the particles are confined to the positive half-line and do not spread as Brownian motions or simple random walks. We show that the trajectory of the noncollidingq -exchangeable walks started from an arbitrary initial configuration forms a determinantal point process, and express its kernel in a double contour integral form. This kernel is obtained as a limit from the correlation kernel ofq -distributed random lozenge tilings of sawtooth polygons. In the limit as , withγ > 0 fixed, and under a suitable scaling of the initial data, we obtain a limit shape of our noncolliding walks and also show that their local statistics are governed by the incomplete beta kernel. The latter is a distinguished translation invariant ergodic extension of the two-dimensional discrete sine kernel. -
The first measurement of the cross section for incoherent photonuclear production ofvector mesons as a function of the Mandelstamvariable is presented. The measurement was carried out with the ALICE detector at midrapidity,, using ultraperipheral collisions of Pb nuclei at a center-of-mass energy per nucleon pair of. This rapidity interval corresponds to a Bjorken-range. Cross sections are given in fiveintervals in the rangeand compared to the predictions by different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict adependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data.
© 2024 CERN, for the ALICE Collaboration 2024 CERN -
Abstract A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X,
, in proton-tagged events from proton–proton collisions at$${\textrm{pp}}\rightarrow {\textrm{pp}} +{{\textrm{Z}}}/\upgamma +{{\textrm{X}}} $$ , recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600–1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. Model-independent upper limits on the visible production cross section of$$\sqrt{s}=13\, \textrm{TeV}$$ are set.$${\textrm{pp}}\rightarrow {\textrm{pp}} +{{\textrm{Z}}}/\upgamma +{{\textrm{X}}} $$ -
Properly interpreting lidar (light detection and ranging) signal for characterizing particle distribution relies on a key parameter,
, which relates the particulate volume scattering function (VSF) at 180° ( ) that a lidar measures to the particulate backscattering coefficient ( ). However, has been seldom studied due to challenges in accurately measuring and concurrently in the field. In this study, , as well as its spectral dependence, was re-examined using the VSFs measured in situ at high angular resolution in a wide range of waters., while not measured directly, was inferred using a physically sound, well-validated VSF-inversion method. The effects of particle shape and internal structure on the inversion were tested using three inversion kernels consisting of phase functions computed for particles that are assumed as homogenous sphere, homogenous asymmetric hexahedra, or coated sphere. The reconstructed VSFs using any of the three kernels agreed well with the measured VSFs with a mean percentage difference at scattering angles . At angles immediately near or equal to 180°, the reconstructed depends strongly on the inversion kernel. derived with the sphere kernels was smaller than those derived with the hexahedra kernel but consistent with estimated directly from high-spectral-resolution lidar and in situ backscattering sensor. The possible explanation was that the sphere kernels are able to capture the backscattering enhancement feature near 180° that has been observed for marine particles.derived using the coated sphere kernel was generally lower than those derived with the homogenous sphere kernel. Our result suggests that is sensitive to the shape and internal structure of particles and significant error could be induced if a fixed value of is to be used to interpret lidar signal collected in different waters. On the other hand, showed little spectral dependence.