skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MAGIC and Fermi-LAT gamma-ray results on unassociated HAWC sources
The HAWC Collaboration released the 2HWC catalogue of TeV sources, in which 19 show no association with any known high-energy (HE; E ≳ 10 GeV) or very-high-energy (VHE; E ≳ 300 GeV) sources. This catalogue motivated follow-up studies by both the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) and Fermi-LAT (Large Area Telescope) observatories with the aim of investigating gamma-ray emission over a broad energy band. In this paper, we report the results from the first joint work between High Altitude Water Cherenkov (HAWC), MAGIC, and Fermi-LAT on three unassociated HAWC sources: 2HWC J2006+341, 2HWC J1907+084*, and 2HWC J1852+013*. Although no significant detection was found in the HE and VHE regimes, this investigation shows that a minimum 1° extension (at 95 per cent confidence level) and harder spectrum in the GeV than the one extrapolated from HAWC results are required in the case of 2HWC J1852+013*, whilst a simply minimum extension of 0.16° (at 95 per cent confidence level) can already explain the scenario proposed by HAWC for the remaining sources. Moreover, the hypothesis that these sources are pulsar wind nebulae is also investigated in detail.  more » « less
Award ID(s):
1806854
PAR ID:
10159682
Author(s) / Creator(s):
Date Published:
Journal Name:
Monthly notices of the Royal Astronomical Society
Volume:
485
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
356 - 366
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The HAWC Collaboration released the 2HWC catalogue of TeV sources, in which 19 show no association with any known high-energy (HE; E ≳ 10 GeV) or very-high-energy (VHE; E ≳ 300 GeV) sources. This catalogue motivated follow-up studies by both the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) and Fermi-LAT (Large Area Telescope) observatories with the aim of investigating gamma-ray emission over a broad energy band. In this paper, we report the results from the first joint work between High Altitude Water Cherenkov (HAWC), MAGIC, and Fermi-LAT on three unassociated HAWC sources: 2HWC J2006+341, 2HWC J1907+084*, and 2HWC J1852+013*. Although no significant detection was found in the HE and VHE regimes, this investigation shows that a minimum 1° extension (at 95 per cent confidence level) and harder spectrum in the GeV than the one extrapolated from HAWC results are required in the case of 2HWC J1852+013*, whilst a simply minimum extension of 0.16° (at 95 per cent confidence level) can already explain the scenario proposed by HAWC for the remaining sources. Moreover, the hypothesis that these sources are pulsar wind nebulae is also investigated in detail. 
    more » « less
  2. ABSTRACT The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotron radiation emitted by relativistic, non-thermal electrons accelerated by the blast wave, the origin of the emission at high energies (HE; ≳GeV) remains uncertain. The recent detection of sub-TeV emission from GRB 190114C by the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) raises further debate on what powers the very high energy (VHE; ≳300 GeV) emission. Here, we explore the inverse Compton scenario as a candidate for the HE and VHE emissions, considering two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton or SSC) and isotropic photon fields external to the blast wave (external Compton). For each case, we compute the multiwavelength afterglow spectra and light curves. We find that SSC will dominate particle cooling and the GeV emission, unless a dense ambient infrared photon field, typical of star-forming regions, is present. Additionally, considering the extragalactic background light attenuation, we discuss the detectability of VHE afterglows by existing and future gamma-ray instruments for a wide range of model parameters. Studying GRB 190114C, we find that its afterglow emission in the Fermi-Large Area Telescope (LAT) band is synchrotron dominated. The late-time Fermi-LAT measurement (i.e. t ∼ 104 s), and the MAGIC observation also set an upper limit on the energy density of a putative external infrared photon field (i.e. $${\lesssim} 3\times 10^{-9}\, {\rm erg\, cm^{-3}}$$), making the inverse Compton dominant in the sub-TeV energies. 
    more » « less
  3. The BL Lacertae object VER J0521+211 underwent a notable flaring episode in February 2020. A short-term monitoring campaign, led by the MAGIC (Major Atmospheric Gamma Imaging Cherenkov) collaboration, covering a wide energy range from radio to very high-energy (VHE, 100 GeV <E< 100 TeV) gamma rays was organised to study its evolution. These observations resulted in a consistent detection of the source over six consecutive nights in the VHE gamma-ray domain. Combining these nightly observations with an extensive set of multi-wavelength data made modelling of the blazar’s spectral energy distribution (SED) possible during the flare. This modelling was performed with a focus on two plausible emission mechanisms: (i) a leptonic two-zone synchrotron-self-Compton scenario, and (ii) a lepto-hadronic one-zone scenario. Both models effectively replicated the observed SED from radio to the VHE gamma-ray band. Furthermore, by introducing a set of evolving parameters, both models were successful in reproducing the evolution of the fluxes measured in different bands throughout the observing campaign. Notably, the lepto-hadronic model predicts enhanced photon and neutrino fluxes at ultra-high energies (E> 100 TeV). While the photon component, generated via decay of neutral pions, is not directly observable as it is subject to intense pair production (and therefore extinction) through interactions with the cosmic microwave background photons, neutrino detectors (e.g. IceCube) can probe the predicted neutrino component. Finally, the analysis of the gamma-ray spectra, observed by MAGIC and theFermi-LAT telescopes, yielded a conservative 95% confidence upper limit ofz ≤ 0.244 for the redshift of this blazar. 
    more » « less
  4. Abstract Many gamma-ray bursts (GRBs) have been observed from radio wavelengths, and a few at very high energies (VHEs, >100 GeV). The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is well suited to study transient phenomena at VHEs owing to its large field of view and duty cycle. These features allow for searches of VHE emission and can probe different model assumptions of duration and spectra. In this paper, we use data collected by HAWC between 2014 December and 2020 May to search for emission in the energy range from 80 to 800 GeV coming from a sample of 47 short GRBs that triggered the Fermi, Swift, and Konus satellites during this period. This analysis is optimized to search for delayed and extended VHE emission within the first 20 s of each burst. We find no evidence of VHE emission, either simultaneous or delayed, with respect to the prompt emission. Upper limits (90% confidence level) derived on the GRB fluence are used to constrain the synchrotron self-Compton forward-shock model. Constraints for the interstellar density as low as 10 −2 cm −3 are obtained when assuming z = 0.3 for bursts with the highest keV fluences such as GRB 170206A and GRB 181222841. Such a low density makes observing VHE emission mainly from the fast-cooling regime challenging. 
    more » « less
  5. Extreme high-synchrotron-peak blazars (EHSPs) are postulated as the most efficient and extreme particle accelerators in the universe but remain enigmatic as a possible new class of TeV gamma- ray blazars. Blazars are active galactic nuclei (AGNs) with jets of relativistic particles that generate non-thermal emission pointed along the line-of-sight. Their spectral energy distribution (SED) are characterized by synchrotron and inverse-Compton peaks, indicating acceleration of leptonic and possibly hadronic particle populations in the jet. EHSPs are characterized by a peak synchrotron frequency > 1017 Hz with their Compton peak expected to fall in the TeV range. Indeed, the handful of EHSPs detected by Imaging Air Cherenkov Telescopes (IACTs) have presented challenges where some may be a high-frequency extension of the blazar sequence while others peaking around 10 TeV may represent a different class of TeV emitters. Detections of the high-energy and very-high-energy (HE; E > 100 MeV, VHE; E > 100 GeV) components of the Compton peak will play an important role in constraining the acceleration model derived from the SED. We present the discovery of TeV emission from RBS 1366, a candidate EHSP, by the VERITAS observatory. Using HE and VHE data from the Fermi-LAT and VERITAS observatories, respectively, we characterize the detection by providing an SED and model fit in the context of other EHSP candidates. Our work confirms the status of RBS 1366 as an EHBL. 
    more » « less