skip to main content


Search for: All records

Award ID contains: 1806854

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The extragalactic background light (EBL) contains all the radiation emitted by nuclear and accretion processes in stars and compact objects since the epoch of recombination. Measuring the EBL density directly is challenging, especially in the near-to-far-infrared wave band, mainly due to the zodiacal light foreground. Instead, gamma-ray astronomy offers the possibility to indirectly set limits on the EBL by studying the effects of gamma-ray absorption in the very high energy (VHE: >100 GeV) spectra of distant blazars. The High Altitude Water Cherenkov Gamma Ray Observatory (HAWC) is one of the few instruments sensitive to gamma rays with energies above 10 TeV. This offers the opportunity to probe the EBL in the near/mid-IR region: λ = 1–100 μ m. In this study, we fit physically motivated emission models to Fermi-LAT gigaelectronvolt data to extrapolate the intrinsic teraelectronvolt spectra of blazars. We then simulate a large number of absorbed spectra for different randomly generated EBL model shapes and calculate Bayesian credible bands in the EBL intensity space by comparing and testing the agreement between the absorbed spectra and HAWC extragalactic observations of two blazars. The resulting bands are in agreement with current EBL lower and upper limits, showing a downward trend toward higher wavelength values λ > 10 μ m also observed in previous measurements. 
    more » « less
  2. Abstract We report TeV gamma-ray observations of the ultra-high-energy source MGRO J1908+06 using data from the High Altitude Water Cherenkov Observatory. This source is one of the highest-energy known gamma-ray sources, with emission extending past 200 TeV. Modeling suggests that the bulk of the TeV gamma-ray emission is leptonic in nature, driven by the energetic radio-faint pulsar PSR J1907+0602. Depending on what assumptions are included in the model, a hadronic component may also be allowed. Using the results of the modeling, we discuss implications for detection prospects by multi-messenger campaigns. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)