skip to main content


Title: On the equivalence between graph isomorphism testing and function approximation with GNNs
Graph neural networks (GNNs) have achieved lots of success on graph-structured data. In light of this, there has been increasing interest in studying their representation power. One line of work focuses on the universal approximation of permutation-invariant functions by certain classes of GNNs, and another demonstrates the limitation of GNNs via graph isomorphism tests. Our work connects these two perspectives and proves their equivalence. We further develop a framework of the representation power of GNNs with the language of sigma-algebra, which incorporates both viewpoints. Using this framework, we compare the expressive power of different classes of GNNs as well as other methods on graphs. In particular, we prove that order-2 Graph G-invariant networks fail to distinguish non-isomorphic regular graphs with the same degree. We then extend them to a new architecture, Ring-GNN, which succeeds in distinguishing these graphs as well as for tasks on real-world datasets.  more » « less
Award ID(s):
1845360 1816753
NSF-PAR ID:
10159683
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph neural networks (GNNs) have limited expressive power, failing to represent many graph classes correctly. While more expressive graph representation learning (GRL) alternatives can distinguish some of these classes, they are significantly harder to implement, may not scale well, and have not been shown to outperform well-tuned GNNs in real-world tasks. Thus, devising simple, scalable, and expressive GRL architectures that also achieve real-world improvements remains an open challenge. In this work, we show the extent to which graph reconstruction---reconstructing a graph from its subgraphs---can mitigate the theoretical and practical problems currently faced by GRL architectures. First, we leverage graph reconstruction to build two new classes of expressive graph representations. Secondly, we show how graph reconstruction boosts the expressive power of any GNN architecture while being a (provably) powerful inductive bias for invariances to vertex removals. Empirically, we show how reconstruction can boost GNN's expressive power---while maintaining its invariance to permutations of the vertices---by solving seven graph property tasks not solvable by the original GNN. Further, we demonstrate how it boosts state-of-the-art GNN's performance across nine real-world benchmark datasets. 
    more » « less
  2. Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs. 
    more » « less
  3. null (Ed.)
    From the perspective of expressive power, this work compares multi-layer Graph Neural Networks (GNNs) with a simplified alternative that we call Graph-Augmented Multi-Layer Perceptrons (GA-MLPs), which first augments node features with certain multi-hop operators on the graph and then applies an MLP in a node-wise fashion. From the perspective of graph isomorphism testing, we show both theoretically and numerically that GA-MLPs with suitable operators can distinguish almost all non-isomorphic graphs, just like the Weifeiler-Lehman (WL) test. However, by viewing them as node-level functions and examining the equivalence classes they induce on rooted graphs, we prove a separation in expressive power between GA-MLPs and GNNs that grows exponentially in depth. In particular, unlike GNNs, GA-MLPs are unable to count the number of attributed walks. We also demonstrate via community detection experiments that GA-MLPs can be limited by their choice of operator family, as compared to GNNs with higher flexibility in learning. 
    more » « less
  4. null (Ed.)
    From the perspective of expressive power, this work compares multi-layer Graph Neural Networks (GNNs) with a simplified alternative thatwe call Graph-Augmented Multi-Layer Perceptrons (GA-MLPs), which first augments node features with certain multi-hop operators on the graph and then applies an MLP in a node-wise fashion. From the perspective of graph isomorphism testing,we showboth theoretically and numerically that GA-MLPs with suitable operators can distinguish almost all non-isomorphic graphs, just like the Weifeiler-Lehman (WL) test. However, by viewing them as node-level functions and examining the equivalence classes they induce on rooted graphs, we prove a separation in expressive power between GA-MLPs and GNNs that grows exponentially in depth. In particular, unlike GNNs, GA-MLPs are unable to count the number of attributed walks. We also demonstrate via community detection experiments that GA-MLPs can be limited by their choice of operator family, as compared to GNNs with higher flexibility in learning. 
    more » « less
  5. This work generalizes graph neural networks (GNNs) beyond those based on the Weisfeiler- Lehman (WL) algorithm, graph Laplacians, and diffusions. Our approach, denoted Relational Pooling (RP), draws from the theory of finite partial exchangeability to provide a framework with maximal representation power for graphs. RP can work with existing graph representation models and, somewhat counterintuitively, can make them even more powerful than the orig- inal WL isomorphism test. Additionally, RP allows architectures like Recurrent Neural Net- works and Convolutional Neural Networks to be used in a theoretically sound approach for graph classification. We demonstrate improved perfor- mance of RP-based graph representations over state-of-the-art methods on a number of tasks. 
    more » « less