A key assumption in multi-task learning is that at the inference time the multi-task model only has access to a given data point but not to the data point’s labels from other tasks. This presents an opportunity to extend multi-task learning to utilize data point’s labels from other auxiliary tasks, and this way improves performance on the new task. Here we introduce a novel relational multi-task learning setting where we leverage data point labels from auxiliary tasks to make more accurate predictions on the new task. We develop MetaLink, where our key innovation is to build a knowledge graph that connects data points and tasks and thus allows us to leverage labels from auxiliary tasks. The knowledge graph consists of two types of nodes: (1) data nodes, where node features are data embeddings computed by the neural network, and (2) task nodes, with the last layer’s weights for each task as node features. The edges in this knowledge graph capture data-task relationships, and the edge label captures the label of a data point on a particular task. Under MetaLink, we reformulate the new task as a link label prediction problem between a data node and a task node. The MetaLink framework provides flexibility to model knowledge transfer from auxiliary task labels to the task of interest. We evaluate MetaLink on 6 benchmark datasets in both biochemical and vision domains. Experiments demonstrate that MetaLink can successfully utilize the relations among different tasks, outperforming the state-of-the-art methods under the proposed relational multi-task learning setting, with up to 27% improvement in ROC AUC.
more »
« less
Adaptive Auxiliary Task Weighting for Reinforcement Learning
Reinforcement learning is known to be sample inefficient, preventing its application to many real-world problems, especially with high dimensional observations like images. Transferring knowledge from other auxiliary tasks is a powerful tool for improving the learning efficiency. However, the usage of auxiliary tasks has been limited so far due to the difficulty in selecting and combining different auxiliary tasks. In this work, we propose a principled online learning algorithm that dynam- ically combines different auxiliary tasks to speed up training for reinforcement learning. Our method is based on the idea that auxiliary tasks should provide gradient directions that, in the long term, help to decrease the loss of the main task. We show in various environments that our algorithm can effectively combine a variety of different auxiliary tasks and achieves significant speedup compared to previous heuristic approaches of adapting auxiliary task weights.
more »
« less
- Award ID(s):
- 1849154
- PAR ID:
- 10159738
- Date Published:
- Journal Name:
- Advances in neural information processing systems
- Volume:
- 32
- ISSN:
- 1049-5258
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study offline multitask representation learning in reinforcement learning (RL), where a learner is provided with an offline dataset from different tasks that share a common representation and is tasked to learn the shared representation. We theoretically investigate offline multitask low-rank RL, and propose a new algorithm called MORL for offline multitask representation learning. Furthermore, we examine downstream RL in reward-free, offline and online scenarios, where a new task is introduced to the agent that shares the same representation as the upstream offline tasks. Our theoretical results demonstrate the benefits of using the learned representation from the upstream offline task instead of directly learning the representation of the low-rank model.more » « less
-
null (Ed.)Current image-based reinforcement learning (RL) algorithms typically operate on the whole image without performing object-level reasoning. This leads to inefficient goal sampling and ineffective reward functions. In this paper, we improve upon previous visual self-supervised RL by incorporating object-level reasoning and occlusion reasoning. Specifically, we use unknown object segmentation to ignore distractors in the scene for better reward computation and goal generation; we further enable occlusion reasoning by employing a novel auxiliary loss and training scheme. We demonstrate that our proposed algorithm, ROLL (Reinforcement learning with Object Level Learning), learns dramatically faster and achieves better final performance compared with previous methods in several simulated visual control tasks.more » « less
-
Model-Based Reinforcement Learning (MBRL) has shown promise in visual control tasks due to its data efficiency. However, training MBRL agents to develop generalizable perception remains challenging, especially amid visual distractions that introduce noise in representation learning. We introduce Segmentation Dreamer (SD), a framework that facilitates representation learning in MBRL by incorporating a novel auxiliary task. Assuming that task-relevant components in images can be easily identified with prior knowledge in a given task, SD uses segmentation masks on image observations to reconstruct only task-relevant regions, reducing representation complexity. SD can leverage either ground-truth masks available in simulation or potentially imperfect segmentation foundation models. The latter is further improved by selectively applying the image reconstruction loss to mitigate misleading learning signals from mask prediction errors. In modified DeepMind Control suite and Meta-World tasks with added visual distractions, SD achieves significantly better sample efficiency and greater final performance than prior work and is especially effective in sparse reward tasks that had been unsolvable by prior work. We also validate its effectiveness in a real-world robotic lane-following task when training with intentional distractions for zero-shot transfer.amore » « less
-
We study the problem of fine-tuning a language model (LM) for a target task by optimally using the information from n auxiliary tasks. This problem has broad applications in NLP, such as targeted instruction tuning and data selection in chain-of-thought fine-tuning. The key challenge of this problem is that not all auxiliary tasks are useful to improve the performance of the target task. Thus, choosing the right subset of auxiliary tasks is crucial. Conventional subset selection methods, such as forward & backward selection, are unsuitable for LM fine-tuning because they require repeated training on subsets of auxiliary tasks. This paper introduces a new algorithm to estimate model fine-tuning performances without repeated training. Our algorithm first performs multitask training using the data of all the tasks to obtain a meta initialization. Then, we approximate the model fine-tuning loss of a subset using functional values and gradients from the meta initialization. Empirically, we find that this gradient-based approximation holds with remarkable accuracy for twelve transformer-based LMs. Thus, we can now estimate fine-tuning performances on CPUs within a few seconds. We conduct extensive experiments to validate our approach, delivering a speedup of 30× over conventional subset selection while incurring only 1% error of the true fine-tuning performances. In downstream evaluations of instruction tuning and chain-of-thought fine-tuning, our approach improves over prior methods that utilize gradient or representation similarity for subset selection by up to 3.8%.more » « less
An official website of the United States government

