Machine learning with missing data has been approached in two different ways, including feature imputation where missing feature values are estimated based on observed values and label prediction where downstream labels are learned directly from incomplete data. However, existing imputation models tend to have strong prior assumptions and cannot learn from downstream tasks, while models targeting label prediction often involve heuristics and can encounter scalability issues. Here we propose GRAPE, a graph-based framework for feature imputation as well as label prediction. GRAPE tackles the missing data problem using a graph representation, where the observations and features are viewed as twomore »
This content will become publicly available on January 1, 2023
Relational Multi-Task Learning: Modeling Relations between Data and Tasks
A key assumption in multi-task learning is that at the inference time the multi-task model only has access to a given data point but not to the data point’s labels from other tasks. This presents an opportunity to extend multi-task learning to utilize data point’s labels from other auxiliary tasks, and this way improves performance on the new task. Here we introduce a novel relational multi-task learning setting where we leverage data point labels from auxiliary tasks to make more accurate predictions on the new task. We develop MetaLink, where our key innovation is to build a knowledge graph that connects data points and tasks and thus allows us to leverage labels from auxiliary tasks. The knowledge graph consists of two types of nodes: (1) data nodes, where node features are data embeddings computed by the neural network, and (2) task nodes, with the last layer’s weights for each task as node features. The edges in this knowledge graph capture data-task relationships, and the edge label captures the label of a data point on a particular task. Under MetaLink, we reformulate the new task as a link label prediction problem between a data node and a task node. The MetaLink more »
- Publication Date:
- NSF-PAR ID:
- 10320180
- Journal Name:
- International Conference on Representation Learning (ICLR)
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Graph neural networks (GNNs) have achieved tremendous success on multiple graph-based learning tasks by fusing network structure and node features. Modern GNN models are built upon iterative aggregation of neighbor's/proximity features by message passing. Its prediction performance has been shown to be strongly bounded by assortative mixing in the graph, a key property wherein nodes with similar attributes mix/connect with each other. We observe that real world networks exhibit heterogeneous or diverse mixing patterns and the conventional global measurement of assortativity, such as global assortativity coefficient, may not be a representative statistic in quantifying this mixing. We adopt a generalizedmore »
-
In traditional graph learning tasks, such as node classification, learning is carried out in a closed-world setting where the number of classes and their training samples are provided to help train models, and the learning goal is to correctly classify unlabeled nodes into classes already known. In reality, due to limited labeling capability and dynamic evolving of networks, some nodes in the networks may not belong to any existing/seen classes, and therefore cannot be correctly classified by closed-world learning algorithms. In this paper, we propose a new open-world graph learning paradigm, where the learning goal is to not only classifymore »
-
Machine learning on graph structured data has attracted much research interest due to its ubiquity in real world data. However, how to efficiently represent graph data in a general way is still an open problem. Traditional methods use handcraft graph features in a tabular form but suffer from the defects of domain expertise requirement and information loss. Graph representation learning overcomes these defects by automatically learning the continuous representations from graph structures, but they require abundant training labels, which are often hard to fulfill for graph-level prediction problems. In this work, we demonstrate that, if available, the domain expertise usedmore »
-
Karlapalem, Kamal ; Cheng, Hong ; Ramakrishnan, Naren ; Reddy, P. Krishna ; Srivastava, Jaideep ; Chakraborty, Tanmoy (Ed.)Constrained learning, a weakly supervised learning task, aims to incorporate domain constraints to learn models without requiring labels for each instance. Because weak supervision knowledge is useful and easy to obtain, constrained learning outperforms unsupervised learning in performance and is preferable than supervised learning in terms of labeling costs. To date, constrained learning, especially constrained clustering, has been extensively studied, but was primarily focused on data in the Euclidean space. In this paper, we propose a weak supervision network embedding (WSNE) for constrained learning of graphs. Because no label is available for individual nodes, we propose a new loss functionmore »