skip to main content


Title: Direct Observation of Bandgap Oscillations Induced by Optical Phonons in Hybrid Lead Iodide Perovskites
Abstract

Hybrid organic–inorganic perovskites such as methylammonium lead iodide have emerged as promising semiconductors for energy‐relevant applications. The interactions between charge carriers and lattice vibrations, giving rise to polarons, have been invoked to explain some of their extraordinary optoelectronic properties. Here, time‐resolved optical spectroscopy is performed, with off‐resonant pumping and electronic probing, to examine several representative lead iodide perovskites. The temporal oscillations of electronic bandgaps induced by coherent lattice vibrations are reported, which is attributed to antiphase octahedral rotations that dominate in the examined 3D and 2D hybrid perovskites. The off‐resonant pumping scheme permits a simplified observation of changes in the bandgap owing to theAgvibrational mode, which is qualitatively different from vibrational modes of other symmetries and without increased complexity of photogenerated electronic charges. The work demonstrates a strong correlation between the lead–iodide octahedral framework and electronic transitions, and provides further insights into the manipulation of coherent optical phonons and related properties in hybrid perovskites on ultrafast timescales.

 
more » « less
Award ID(s):
1806152
NSF-PAR ID:
10456963
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
30
Issue:
22
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Unusual photophysical properties of organic–inorganic hybrid perovskites have not only enabled exceptional performance in optoelectronic devices, but also led to debates on the nature of charge carriers in these materials. This study makes the first observation of intense terahertz (THz) emission from the hybrid perovskite methylammonium lead iodide (CH3NH3PbI3) following photoexcitation, enabling an ultrafast probe of charge separation, hot‐carrier transport, and carrier–lattice coupling under 1‐sun‐equivalent illumination conditions. Using this approach, the initial charge separation/transport in the hybrid perovskites is shown to be driven by diffusion and not by surface fields or intrinsic ferroelectricity. Diffusivities of the hot and band‐edge carriers along the surface normal direction are calculated by analyzing the emitted THz transients, with direct implications for hot‐carrier device applications. Furthermore, photogenerated carriers are found to drive coherent terahertz‐frequency lattice distortions, associated with reorganizations of the lead‐iodide octahedra as well as coupled vibrations of the organic and inorganic sublattices. This strong and coherent carrier–lattice coupling is resolved on femtosecond timescales and found to be important both for resonant and far‐above‐gap photoexcitation. This study indicates that ultrafast lattice distortions play a key role in the initial processes associated with charge transport.

     
    more » « less
  2. Hybrid organic–inorganic semiconductors feature complex lattice dynamics due to the ionic character of the crystal and the softness arising from non-covalent bonds between molecular moieties and the inorganic network. Here we establish that such dynamic structural complexity in a prototypical two dimensional lead iodide perovskite gives rise to the coexistence of diverse excitonic resonances, each with a distinct degree of polaronic character. By means of high-resolution resonant impul- sive stimulated Raman spectroscopy, we identify vibrational wavepacket dynamics that evolve along different configurational coordinates for distinct excitons and photocarriers. Employing density functional theory calculations, we assign the observed coherent vibrational modes to various low-frequency (≲50 cm−1) optical phonons involving motion in the lead iodide layers. We thus conclude that different excitons induce specific lattice reorganizations, which are signatures of polaronic binding. This insight into the energetic/configurational landscape involving globally neutral primary photoexcitations may be relevant to a broader class of emerging hybrid semiconductor materials. 
    more » « less
  3. In hybrid materials, a high-symmetry lattice is decorated by low-symmetry building blocks. The result is an aperiodic solid that hosts many nearly-degenerate disordered configurations. Using the perovskite methylammonium lead iodide (MAPbI 3 ) as a prototype hybrid material, we show that the inherent disorder renders the conventional phonon picture of transport insufficient. Ab initio molecular dynamics and analysis of the spectral energy density reveal that vibrational carriers simultaneously exhibit features of both classical phonons and of carriers typically found in glasses. The low frequency modes retain elements of acoustic waves but exhibit extremely short lifetimes of only a few tens of picoseconds. For higher frequency modes, strong scattering due to rapid motion and reconfiguration of the organic cation molecules induces a loss of definition of the wave vector. Lattice dynamics shows that these carriers are more akin to diffusons – the nonwave carriers in vitreous materials – and are the dominant contributors to thermal conduction near room temperature. To unify the framework of glassy diffusons with that of phonons scattered at the ultimate limit, three-phonon interactions resolved from first-principles expose anharmonic effects two orders of magnitude higher than in silicon. The dominant anharmonic interactions occur within modes of the PbI 6 octahedral framework itself, as well as between modes of the octahedral framework and modes localized to the MA molecules. The former arises from long-range interactions due to resonant bonding, and the latter from polar rotor scattering of the MA molecules. This establishes a clear microscopic connection between symmetry-breaking, dynamical disorder, anharmonicity, and the loss of wave nature in MAPbI 3 . 
    more » « less
  4. Abstract

    Selectively exciting target molecules to high vibrational states is inefficient in the liquid phase, which restricts the use of IR pumping to catalyze ground-state chemical reactions. Here, we demonstrate that this inefficiency can sometimes be solved by confining the liquid to an optical cavity under vibrational strong coupling conditions. For a liquid solution of13CO2solute in a12CO2solvent, cavity molecular dynamics simulations show that exciting a polariton (hybrid light-matter state) of the solvent with an intense laser pulse, under suitable resonant conditions, may lead to a very strong (>3 quanta) and ultrafast (<1 ps) excitation of the solute, even though the solvent ends up being barely excited. By contrast, outside a cavity the same input pulse fluence can excite the solute by only half a vibrational quantum and the selectivity of excitation is low. Our finding is robust under different cavity volumes, which may lead to observable cavity enhancement on IR photochemical reactions in Fabry–Pérot cavities.

     
    more » « less
  5. Abstract

    Hybrid organic–inorganic perovskites have recently gained immense attention due to their unique optical and electronic properties and low production cost, which make them promising candidates for a wide range of optoelectronic devices. But unlike most other technologies, the breakthroughs witnessed in hybrid perovskite optoelectronics have outgrown the basic understanding of the fundamental material properties. For example, the effectiveness of charge transport in relation to film microstructure and processing has remained elusive. In this study, field‐effect transistors are fabricated and evaluated in order to probe the nature and dynamics of charge transport in thin films of methylammonium lead iodide. A dramatic improvement is shown in the electrical properties upon solvent vapor annealing. The resulting devices exhibit ambipolar transport, with room‐temperature hole and electron mobilities exceeding 10 cm2V−1s−1. The remarkable enhancement in charge carrier mobility is attributed to the increase in the grain size and passivation of grain boundaries via the formation of solvent complexes.

     
    more » « less