This paper proposes a numerical framework to model the deployment of a Free Fall Penetrometer (FFP) device in dry sands using the Material Point Method (MPM). Seabed characterization is required to assess a number of geotechnical problems in the nearshore and offshore areas, and FFP deployment is becoming a popular method to characterize shallow sediments. A moving mesh technique is used to ensure the accurate geometry of the FFP device throughout the calculation and the soil-FFP interaction is modelled with a frictional contact algorithm. The FFP device is simulated as a rigid body, which enhances the performance of the computation and reduces its computational cost. Numerical results are compared to experimental data, and are very promising.
more »
« less
Influence of the Stiffness and Saturated Conditions of Sand on the Numerical Simulation of Free Fall Penetrometers
Impact penetration into soils is one of the most challenging phenomena to model using numerical techniques due to the very rapid large-deformations and water-soil-structure interaction problems involved in the process. In this work, portable free fall penetration testing (FFP) in dry and saturated sands is modeled using the material point method (MPM). MPM is a powerful tool for large-deformation applications in history-dependent materials. A parametric analysis is performed to understand the influence of the soil stiffness and the water excess pore pressures produced during the impact. The effect of the sand stiffness is studied by modifying its Young’s modulus, and the effect of the water is considered by comparing a fully dry model with a fully coupled hydro-mechanical model. The results indicate that the stiffness of the sand strongly controls the appearance of a general bearing capacity failure, which produces deceleration responses with more than one peak, dissimilar to physical tests. In the case of fully saturated sand, the penetration depth is lower than for dry sand with the same properties and the kinematical response of the FFP is consistent with experiments. The results are promising and encourage further development of the simulations.
more »
« less
- Award ID(s):
- 1937984
- PAR ID:
- 10159754
- Date Published:
- Journal Name:
- Proc. Geo-Congress 2020
- Page Range / eLocation ID:
- 9 to 18
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Seismic response of unsaturated soil layers may differ from that of saturated or dry soil deposits. A set of centrifuge experiments was conducted to study the influence of partial saturation on seismic response of sand layers under scaled Northridge earthquake motion. Steady state infiltration was implemented to control and provide uniform degrees of saturation profiles in depth. The amplification of peak ground acceleration at the soil surface was inversely proportional to the degree of saturation, especially in low period range. The cumulative intensity amplification of the motion was also higher in unsaturated soils with higher suctions. The lateral deformation and surface settlement of partially saturated sand with higher stiffness were generally lower than that in dry soil. Although neglecting the effect of partial saturation in sand layers might be conservative with respect to seismic deformations, it may result in underestimating the surface design spectra.more » « less
-
The dynamic properties of a clean sand under different degrees of saturation is investigated using a modified custom built Direct Simple Shear (DSS) apparatus at the University of New Hampshire. The specific characteristics of the DSS are presented and the testing procedures are discussed. The device utilizes the axis translation and tensiometric techniques to control the matric suction in the soil specimen. The investigation on F75 Ottawa Sand shows a decrease in shear modulus and an increase in damping by increasing the shear strain over the tested range of strains for various degrees of saturation; dry, saturated, and partially saturated. The modulus reduction in the applied range of medium shear strains regardless of the degree of saturation demonstrates the capability of the DSS in consistently capturing the changes of dynamic properties. Experimental results indicate that the matric suction can have a substantial effect on the stiffness of the soil. However, the extent of this effect may depend on the induced strain level the effective stress in unsaturated soil. In addition, partially saturated specimens resulted in lower dynamic compression.more » « less
-
The effect of soil interlayering on the measured cone penetration resistance was examined in a layered soil model tested on a 9-m radius centrifuge. The soil profile consisted of a layer of sand between overlying and underlying layers of low plasticity clayey silt. The sand layer thickness varied from 0 to 240 mm (model scale) along the length of the model. The sand was loose with a relative density of 44% on one side of the model, and dense with a relative density of 88% on the other side. The clayey silt had a plasticity index (PI) of 6 and over-consolidation ratio (OCR) of about 1.5. Multiple cone penetration soundings were performed along the width and length of the model using cone penetrometers with diameters of 4, 6 and 10 mm. The model construction procedure, data processing, and cone penetration testing results are described.more » « less
-
Dynamic shear modulus plays an important role in the seismic assessment of geotechnical systems. Changes in the degree of water saturation influence dynamic soil properties because of the presence of matric suction. This paper describes the modification of a suction-controlled cyclic triaxial apparatus to investigate the strain-dependent shear modulus of unsaturated soils. Several strain- and stress-controlled cyclic triaxial tests were performed on a clean sand with various degrees of saturation. Suction in unsaturated sands increased the shear modulus in comparison with the ones in dry and saturated conditions for different shear strain levels, with a peak modulus in higher suction levels. Also, shear modulus decreased with an increase in the shear strain for specimens with similar matric suction. The normalized shear moduli of the unsaturated sand specimens followed a similar trend to the ones predicted by the available empirical shear modulus reduction functions but showed lower values. The modulus reduction ratios of unsaturated sands shifted up as a result of higher effective stress and suction-induced stiffness. These trends were consistent for both strain- and stress-controlled tests.more » « less
An official website of the United States government

