Dynamic shear modulus plays an important role in the seismic assessment of geotechnical systems. Changes in the degree of water saturation influence dynamic soil properties because of the presence of matric suction. This paper describes the modification of a suction-controlled cyclic triaxial apparatus to investigate the strain-dependent shear modulus of unsaturated soils. Several strain- and stress-controlled cyclic triaxial tests were performed on a clean sand with various degrees of saturation. Suction in unsaturated sands increased the shear modulus in comparison with the ones in dry and saturated conditions for different shear strain levels, with a peak modulus in higher suction levels. Also, shear modulus decreased with an increase in the shear strain for specimens with similar matric suction. The normalized shear moduli of the unsaturated sand specimens followed a similar trend to the ones predicted by the available empirical shear modulus reduction functions but showed lower values. The modulus reduction ratios of unsaturated sands shifted up as a result of higher effective stress and suction-induced stiffness. These trends were consistent for both strain- and stress-controlled tests.
more »
« less
Centrifuge tests to assess seismic site response of partially saturated sand layers
Seismic response of unsaturated soil layers may differ from that of saturated or dry soil deposits. A set of centrifuge experiments was conducted to study the influence of partial saturation on seismic response of sand layers under scaled Northridge earthquake motion. Steady state infiltration was implemented to control and provide uniform degrees of saturation profiles in depth. The amplification of peak ground acceleration at the soil surface was inversely proportional to the degree of saturation, especially in low period range. The cumulative intensity amplification of the motion was also higher in unsaturated soils with higher suctions. The lateral deformation and surface settlement of partially saturated sand with higher stiffness were generally lower than that in dry soil. Although neglecting the effect of partial saturation in sand layers might be conservative with respect to seismic deformations, it may result in underestimating the surface design spectra.
more »
« less
- Award ID(s):
- 1333810
- PAR ID:
- 10478064
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Soil Dynamics and Earthquake Engineering
- Volume:
- 94
- Issue:
- C
- ISSN:
- 0267-7261
- Page Range / eLocation ID:
- 254 to 265
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The dynamic properties of a clean sand under different degrees of saturation is investigated using a modified custom built Direct Simple Shear (DSS) apparatus at the University of New Hampshire. The specific characteristics of the DSS are presented and the testing procedures are discussed. The device utilizes the axis translation and tensiometric techniques to control the matric suction in the soil specimen. The investigation on F75 Ottawa Sand shows a decrease in shear modulus and an increase in damping by increasing the shear strain over the tested range of strains for various degrees of saturation; dry, saturated, and partially saturated. The modulus reduction in the applied range of medium shear strains regardless of the degree of saturation demonstrates the capability of the DSS in consistently capturing the changes of dynamic properties. Experimental results indicate that the matric suction can have a substantial effect on the stiffness of the soil. However, the extent of this effect may depend on the induced strain level the effective stress in unsaturated soil. In addition, partially saturated specimens resulted in lower dynamic compression.more » « less
-
Abstract Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first‐order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated‐soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.more » « less
-
Seismic compression is the accrual of contractive volumetric strain in unsaturated or partially saturated sandy soils during earthquake shaking and has caused significant distress to overlying and nearby structures. The phenomenon can be well characterized by load-dependent, interaction macro-level fatigue theories. Toward this end, the Byrne cyclic shear-volumetric strain coupling model is expanded and calibrated for evaluating seismic compression for several soil types. In addition, the model was transformed to allow it to be implemented in a “simplified” manner, in addition to the original “non-simplified” formulation. Both implementation approaches are used to analyze a site in Japan impacted by the 2007, Mw6.6 Niigata-ken Chuetsu-oki earthquake. The results from the analyses are in general accord with the post-earthquake field observations and highlight the sensitivity of predicted magnitude of the seismic compression to the input variables used and modeling assumptions (e.g. relative density of the soil, magnitude of the volumetric threshold strain, orientation of the ground motions, settlement of soils below the ground water table, and accounting for multidirectional shaking). Although additional studies are needed to further validate the findings presented herein, estimation of relative density and threshold shear strain of the soil and ground motion orientation individually have moderate-to-significant influence on the computed magnitude of seismic compression, but they have a significant influence when taken in combination. Also, the seismic compression models can seemingly be used to predict the settlement in fully saturated sand when the excess pore water pressures are limited. Finally, accounting for multidirectional shaking has a significant influence on the computed magnitude of seismic compression.more » « less
-
Impact penetration into soils is one of the most challenging phenomena to model using numerical techniques due to the very rapid large-deformations and water-soil-structure interaction problems involved in the process. In this work, portable free fall penetration testing (FFP) in dry and saturated sands is modeled using the material point method (MPM). MPM is a powerful tool for large-deformation applications in history-dependent materials. A parametric analysis is performed to understand the influence of the soil stiffness and the water excess pore pressures produced during the impact. The effect of the sand stiffness is studied by modifying its Young’s modulus, and the effect of the water is considered by comparing a fully dry model with a fully coupled hydro-mechanical model. The results indicate that the stiffness of the sand strongly controls the appearance of a general bearing capacity failure, which produces deceleration responses with more than one peak, dissimilar to physical tests. In the case of fully saturated sand, the penetration depth is lower than for dry sand with the same properties and the kinematical response of the FFP is consistent with experiments. The results are promising and encourage further development of the simulations.more » « less
An official website of the United States government

