Effects of Ni nanoparticles, MWCNT, and MWCNT/Ni on the power production and the wastewater treatment of a microbial fuel cell
More Like this
-
Online repository: https://speautomotive.com/acce-conference/2021-acce-papers-and-program-guides/ and also on: arXiv:2204.00909. Abstract: While welding of thermoplastic composites (TPCs) is a promising rivetless method to reduce weight, higher confidence in joints’ structural integrity and failure prediction must be achieved for widespread use in industry. In this work, we present an innovative study on damage detection for ultrasonically welded TPC joints with multi-walled carbon nanotubes (MWCNTs) and embedded buckypaper films. MWCNTs show promise for structural health monitoring (SHM) of composite joints, assembled by adhesive bonding or fusion bonding, through electrical resistance changes. This study focuses on investigating multifunctional films and their suitability for ultrasonic welding (USW) of TPCs, using two approaches: 1) MWCNT-filled polypropylene (PP) nanocomposites prepared via solvent dispersion, and 2) high conductivity MWCNT buckypaper embedded between PP films by hot pressing. Nanocomposite formulations containing 5 wt% and 10 wt% MWCNTs were synthesized using solvent dispersion method, followed by compression molding to manufacture films. The effect of MWCNT concentration on electrical and dynamic mechanical behavior of multifunctional films was examined with a Sourcemeter and Dynamic Mechanical Analyzer, and a comparison was made between 5 - 20 wt% MWCNT/PP films based on previous research. Glass fiber/polypropylene (GF/PP) composite joints were ultrasonically welded in a single lap shear configuration using buckypaper and MWCNT/PP films. Furthermore, electrical resistance measurements were carried out for joints under bending loads. It was observed that 15 wt% and 20 wt% MWCNT/PP films had higher stability and sensitivity for resistance response than embedded buckypaper and films with low MWCNT contents, demonstrating their suitability for USW and potential for SHM.more » « less
-
Abstract Addition of sub‐stoichiometric quantities of PEt3and diphenyl disulfide to a solution of [Ni(1,5‐cod)2] generates a mixture of [Ni3(SPh)4(PEt3)3] (1), unreacted [Ni(1,5‐cod)2], and [(1,5‐cod)Ni(PEt3)2], according to1H and31P{1H} NMR spectroscopic monitoring of the in situ reaction mixture. On standing, complex1converts into [Ni4(S)(Ph)(SPh)3(PEt3)3] (2), via formal addition of a “Ni(0)” equivalent, coupled with a CS oxidative addition step, which simultaneously generates the Ni‐bound phenyl ligand and the μ3‐sulfide ligand. Upon gentle heating, complex2converts into a mixture of [Ni5(S)2(SPh)2(PEt3)5] (3) and [Ni8(S)5(PEt3)7] (4), via further addition of “Ni(0)” equivalents, in combination with a series of C–S oxidative addition and CC reductive elimination steps, which serve to convert thiophenolate ligands into sulfide ligands and biphenyl. The presence of1–4in the reaction mixture is confirmed by their independent syntheses and subsequent spectroscopic characterization. Overall, this work provides an unprecedented level of detail of the early stages of Ni nanocluster growth and highlights the fundamental reaction steps (i.e., metal atom addition, CS oxidative addition, and CC reductive elimination) that are required to grow an individual cluster.more » « less
An official website of the United States government

