skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LDA Topic Analysis of a Cybersecurity Textbook
We perform a Latent Dirichlet Allocation (LDA) topic analysis of Matt Bishop’s widely used 1440-page textbook on cybersecurity. To our knowledge, our work is the first time such analysis has been carried out on any singleauthored work of this length. This topic analysis might be useful for creating a supplemental interactive guide to the textbook to help readers explore the book more efficiently for particular learning objectives.  more » « less
Award ID(s):
1753681
PAR ID:
10160115
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020), November 16--20, 2020, online, (May 31, 2020), submitted
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We conducted an across-semester quasi-experimental study that compared students' outcomes under frequent and infrequent testing regimens in an introductory computer science course. Students in the frequent testing (4 quizzes and 4 exams) semester outperformed the infrequent testing (1 midterm and 1 final exam) semester by 9.1 to 13.5 percentage points on code writing questions. We complement these performance results with additional data from surveys, interviews, and analysis of textbook behavior. In the surveys, students report a preference for the smaller number of exams, but rated the exams in the frequent testing semester to be both less difficult and less stressful, in spite of the exams containing identical content. In the interviews, students predominantly indicated (1) that the frequent testing regimen encourages better study habits (e.g., more attention to work, less cramming) and leads to better learning, (2) that frequent testing reduces test anxiety, and (3) that the frequent testing regimen was more fair, but these opinions were not universally held. The students' impressions that the frequent testing regimen would lead to better study habits is borne out in our analysis of students' activities in the course's interactive textbook. In the frequent testing semester, students spent more time on textbook readings and appeared to answer textbook questions more earnestly (i.e., less "gaming the system'' by using hints and brute force). 
    more » « less
  2. null (Ed.)
    Abstract— In this Work in Progress Research paper, we present preliminary results on the analysis of the problems present in a common engineering textbook. In order to transition students from novice to expert problem solving, they must have practice solving problems that are typical of engineering practice, i.e. illstructured and complex. While it is generally believed that classroom problems are for the most part closed-ended and not complex, there is no work in the literature to confirm this belief. In order to address this gap, we analyzed the types of problems present in a commonly used statics textbook, using Jonassen’s well-known typology. Our findings show that almost all of the problems are algorithmic, with a few rule-based and story problems. There were no problems with higher levels of illstructuredness, such as decision-making, diagnosis-solution, or design problems. Some educators may believe that because statics is an introductory level class, it is appropriate to only present wellstructured problems. We argue that it is both possible and necessary to include ill-structured problems in classes at all levels. Doing so could potentially support students’ critical transition from novice to expert problem solvers. Keywords—problem-solving, statics, ambiguity 
    more » « less
  3. Mitrovic, A.; Bosch, N. (Ed.)
    Emoji are commonly used in social media to convey attitudes and emotions. While popular, their use in educational contexts has been sparsely studied. This paper reports on the students’ use of emoji in an online course forum in which students annotate and discuss course material in the margins of the online textbook. For this study, instructors created 11 custom emoji-hashtag pairs that enabled students to quickly communicate affects and reactions in the forum that they experienced while interacting with the course material. Example reporting includes, inviting discussion about a topic, declaring a topic as interesting, or requesting assistance about a topic. We analyze emoji usage by over 1,800 students enrolled in multiple offerings of the same course across multiple academic terms. The data show that some emoji frequently appear together in posts associated with the same paragraphs, suggesting that students use the emoji in this way to communicating complex affective states. We explore the use of computational models for predicting emoji at the post level, even when posts are lacking emoji. This capability can allow instructors to infer information about students’ affective states during their ”at home” interactions with course readings. Finally, we show that partitioning the emoji into distinct groups, rather than trying to predict individual emoji, can be both of pedagogical value to instructors and improve the predictive performance of our approach using the BERT language model. Our procedure can be generalized to other courses and for the benefit of other instructors. 
    more » « less
  4. Despite the prominence of orbitals throughout the undergraduate chemistry curriculum, high-quality visualization of atomic orbitals is out of reach for most scientists. Rigorously visualizing the atomic orbitals even for simple hydrogen-like atoms and ions is rather challenging due to the complex 3-D structure and geometric variability of the orbitals across three distinct quantum numbers. In this work, a graphical user interface (GUI)-based tool for visualizing 3-D volumetric density plots of hydrogen atomic orbitals is introduced. This tool is written in Python, and a Jupyter notebook version with explanatory blocks interspersed in the code is included for pedagogical purposes. The user can manipulate a large number of features using the GUI, which allows customization of the orbital illustrations. Because this visualizer is capable of visualizing orbitals with any quantum numbers and showing their nodal surfaces, it can serve as a supplement to students’ lecture and textbook education on this topic. 
    more » « less
  5. This paper describes the computer architecture content in Dive into Systems, our free, online textbook that introduces a broad range of computer systems topics. Dive into Systems assumes only a CS1 background of the reader, and includes numerous examples and illustrations to foster a reader’s understanding of its content. Our textbook is designed to be used as a primary textbook for a range of courses that introduce computer systems and computer architecture topics. It also serves as a supplementary text in upper-level undergraduate and graduate level courses to provide background material on computer architecture, systems, and parallel computing. In addition to presenting the details about our book’s coverage of computer architecture topics, we also discuss the overarching themes of our textbook and our motivations for writing a free online textbook to introduce computer systems topics. Our book is currently used by more than 45 institutions in a wide range of courses, including undergraduate computer architecture courses. 
    more » « less