skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CrossWeigh: Training Named Entity Tagger from Imperfect Annotations
Everyone makes mistakes. So do human annotators when curating labels for named entity recognition (NER). Such label mistakes might hurt model training and interfere model comparison. In this study, we dive deep into one of the widely-adopted NER benchmark datasets, CoNLL03 NER. We are able to identify label mistakes in about 5.38% test sentences, which is a significant ratio considering that the state-of-the-art test F1 score is already around 93%. Therefore, we manually correct these label mistakes and form a cleaner test set. Our re-evaluation of popular models on this corrected test set leads to more accurate assessments, compared to those on the original test set. More importantly, we propose a simple yet effective framework, CrossWeigh, to handle label mistakes during NER model training. Specifically, it partitions the training data into several folds and train independent NER models to identify potential mistakes in each fold. Then it adjusts the weights of training data accordingly to train the final NER model. Extensive experiments demonstrate significant improvements of plugging various NER models into our proposed framework on three datasets. All implementations and corrected test set are available at our Github repo  more » « less
Award ID(s):
1704532 1741317 1618481
PAR ID:
10160139
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proc. 2019 Conferenc. on Empirical Methods in Natural Language Processing and the 9th International Joint Conf. on Natural Language Processing, EMNLP-IJCNLP 2019,
Volume:
1
Issue:
1
Page Range / eLocation ID:
5153 to 5162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Supervised deep learning methods have achieved state-of-the-art performance on the task of named entity recognition (NER). However, such methods suffer from high cost and low efficiency in training data annotation, leading to highly specialized NER models that cannot be easily adapted to new domains. Recently, distant supervision has been applied to replace human annotation, thanks to the fast development of domain-specific knowledge bases. However, the generated noisy labels pose significant challenges in learning effective neural models with distant supervision. We propose PATNER, a distantly supervised NER model that effectively deals with noisy distant supervision from domain-specific dictionaries. PATNER does not require human-annotated training data but only relies on unlabeled data and incomplete domain-specific dictionaries for distant supervision. It incorporates the distant labeling uncertainty into the neural model training to enhance distant supervision. We go beyond the traditional sequence labeling framework and propose a more effective fuzzy neural model using the tie-or-break tagging scheme for the NER task. Extensive experiments on three benchmark datasets in two domains demonstrate the power of PATNER. Case studies on two additional real-world datasets demonstrate that PATNER improves the distant NER performance in both entity boundary detection and entity type recognition. The results show a great promise in supporting high quality named entity recognition with domain-specific dictionaries on a wide variety of entity types. 
    more » « less
  2. Previous studies on speech emotion recognition (SER) with categorical emotions have often formulated the task as a single-label classification problem, where the emotions are considered orthogonal to each other. However, previous studies have indicated that emotions can co-occur, especially for more ambiguous emotional sentences (e.g., a mixture of happiness and sur- prise). Some studies have regarded SER problems as a multi-label task, predicting multiple emotional classes. However, this formulation does not leverage the relation between emotions during training, since emotions are assumed to be independent. This study explores the idea that emotional classes are not necessarily independent and its implications on training SER models. In particular, we calculate the frequency of co-occurring emotions from perceptual evaluations in the train set to generate a matrix with class-dependent penalties, punishing more mistakes between distant emotional classes. We integrate the penalization matrix into three existing label-learning approaches (hard-label, multi-label, and distribution-label learn- ing) using the proposed modified loss. We train SER models using the penalty loss and commonly used cost functions for SER tasks. The evaluation of our proposed penalization matrix on the MSP-Podcast corpus shows important relative improvements in macro F1-score for hard-label learning (17.12%), multi-label learning (12.79%), and distribution-label learning (25.8%). 
    more » « less
  3. Fine-tuning pre-trained language models is a common practice in building NLP models for various tasks, including the case with less supervision. We argue that under the few-shot setting, formulating fine-tuning closer to the pre-training objective shall be able to unleash more benefits from the pre-trained language models. In this work, we take few-shot named entity recognition (NER) for a pilot study, where existing fine-tuning strategies are much different from pre-training. We propose a novel few-shot fine-tuning framework for NER, FFF-NER. Specifically, we introduce three new types of tokens, “is-entity”, “which-type” and “bracket”, so we can formulate the NER fine-tuning as (masked) token prediction or generation, depending on the choice of the pre-training objective. In our experiments, we apply to fine-tune both BERT and BART for few-shot NER on several benchmark datasets and observe significant improvements over existing fine-tuning strategies, including sequence labeling, prototype meta-learning, and prompt-based approaches. We further perform a series of ablation studies, showing few-shot NER performance is strongly correlated with the similarity between fine-tuning and pre-training. 
    more » « less
  4. Data selection methods, such as active learning and core-set selection, are useful tools for machine learning on large datasets. However, they can be prohibitively expensive to apply in deep learning because they depend on feature representations that need to be learned. In this work, we show that we can greatly improve the computational efficiency by using a small proxy model to perform data selection (e.g., selecting data points to label for active learning). By removing hidden layers from the target model, using smaller architectures, and training for fewer epochs, we create proxies that are an order of magnitude faster to train. Although these small proxy models have higher error rates, we find that they empirically provide useful signals for data selection. We evaluate this “selection via proxy” (SVP) approach on several data selection tasks across five datasets: CIFAR10, CIFAR100, ImageNet, Amazon Review Polarity, and Amazon Review Full. For active learning, applying SVP can give an order of magnitude improvement in data selection runtime (i.e., the time it takes to repeatedly train and select points) without significantly increasing the final error (often within 0.1%). For core-set selection on CIFAR10, proxies that are over 10 faster to train than their larger, more accurate targets can remove up to 50% of the data without harming the final accuracy of the target, leading to a 1:6 end-to-end training time improvement. 
    more » « less
  5. null (Ed.)
    Current text classification methods typically require a good number of human-labeled documents as training data, which can be costly and difficult to obtain in real applications. Hu-mans can perform classification without seeing any labeled examples but only based on a small set of words describing the categories to be classified. In this paper, we explore the potential of only using the label name of each class to train classification models on un-labeled data, without using any labeled documents. We use pre-trained neural language models both as general linguistic knowledge sources for category understanding and as representation learning models for document classification. Our method (1) associates semantically related words with the label names, (2) finds category-indicative words and trains the model to predict their implied categories, and (3) generalizes the model via self-training. We show that our model achieves around 90% ac-curacy on four benchmark datasets including topic and sentiment classification without using any labeled documents but learning from unlabeled data supervised by at most 3 words (1 in most cases) per class as the label name1. 
    more » « less