We study the problem of weakly supervised text classification, which aims to classify text documents into a set of pre-defined categories with category surface names only and without any annotated training document provided. Most existing classifiers leverage textual information in each document. However, in many domains, documents are accompanied by various types of metadata (e.g., authors, venue, and year of a research paper). These metadata and their combinations may serve as strong category indicators in addition to textual contents. In this paper, we explore the potential of using metadata to help weakly supervised text classification. To be specific, we model the relationships between documents and metadata via a heterogeneous information network. To effectively capture higher-order structures in the network, we use motifs to describe metadata combinations. We propose a novel framework, named MotifClass, which (1) selects category-indicative motif instances, (2) retrieves and generates pseudo-labeled training samples based on category names and indicative motif instances, and (3) trains a text classifier using the pseudo training data. Extensive experiments on real-world datasets demonstrate the superior performance of MotifClass to existing weakly supervised text classification approaches. Further analysis shows the benefit of considering higher-order metadata information in our framework.
more »
« less
Text Classification Using Label Names Only: A Language Model Self-Training Approach
Current text classification methods typically require a good number of human-labeled documents as training data, which can be costly and difficult to obtain in real applications. Hu-mans can perform classification without seeing any labeled examples but only based on a small set of words describing the categories to be classified. In this paper, we explore the potential of only using the label name of each class to train classification models on un-labeled data, without using any labeled documents. We use pre-trained neural language models both as general linguistic knowledge sources for category understanding and as representation learning models for document classification. Our method (1) associates semantically related words with the label names, (2) finds category-indicative words and trains the model to predict their implied categories, and (3) generalizes the model via self-training. We show that our model achieves around 90% ac-curacy on four benchmark datasets including topic and sentiment classification without using any labeled documents but learning from unlabeled data supervised by at most 3 words (1 in most cases) per class as the label name1.
more »
« less
- PAR ID:
- 10279818
- Date Published:
- Journal Name:
- EMNLP'20: 2020 Conf. on Empirical Methods in Natural Language Processing, Nov. 2020
- Volume:
- 2020
- Issue:
- 1
- Page Range / eLocation ID:
- 9006 to 9017
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Text categorization is an essential task in Web content analysis. Considering the ever-evolving Web data and new emerging categories, instead of the laborious supervised setting, in this paper, we focus on the minimally-supervised setting that aims to categorize documents effectively, with a couple of seed documents annotated per category. We recognize that texts collected from the Web are often structure-rich, i.e., accompanied by various metadata. One can easily organize the corpus into a text-rich network, joining raw text documents with document attributes, high-quality phrases, label surface names as nodes, and their associations as edges. Such a network provides a holistic view of the corpus’ heterogeneous data sources and enables a joint optimization for network-based analysis and deep textual model training. We therefore propose a novel framework for minimally supervised categorization by learning from the text-rich network. Specifically, we jointly train two modules with different inductive biases – a text analysis module for text understanding and a network learning module for class-discriminative, scalable network learning. Each module generates pseudo training labels from the unlabeled document set, and both modules mutually enhance each other by co-training using pooled pseudo labels. We test our model on two real-world datasets. On the challenging e-commerce product categorization dataset with 683 categories, our experiments show that given only three seed documents per category, our framework can achieve an accuracy of about 92%, significantly outperforming all compared methods; our accuracy is only less than 2% away from the supervised BERT model trained on about 50K labeled documents.more » « less
-
Abstract BackgroundNatural language processing (NLP) tasks in the health domain often deal with limited amount of labeled data due to high annotation costs and naturally rare observations. To compensate for the lack of training data, health NLP researchers often have to leverage knowledge and resources external to a task at hand. Recently, pretrained large-scale language models such as the Bidirectional Encoder Representations from Transformers (BERT) have been proven to be a powerful way of learning rich linguistic knowledge from massive unlabeled text and transferring that knowledge to downstream tasks. However, previous downstream tasks often used training data at such a large scale that is unlikely to obtain in the health domain. In this work, we aim to study whether BERT can still benefit downstream tasks when training data are relatively small in the context of health NLP. MethodWe conducted a learning curve analysis to study the behavior of BERT and baseline models as training data size increases. We observed the classification performance of these models on two disease diagnosis data sets, where some diseases are naturally rare and have very limited observations (fewer than 2 out of 10,000). The baselines included commonly used text classification models such as sparse and dense bag-of-words models, long short-term memory networks, and their variants that leveraged external knowledge. To obtain learning curves, we incremented the amount of training examples per disease from small to large, and measured the classification performance in macro-averaged$$F_{1}$$ score. ResultsOn the task of classifying all diseases, the learning curves of BERT were consistently above all baselines, significantly outperforming them across the spectrum of training data sizes. But under extreme situations where only one or two training documents per disease were available, BERT was outperformed by linear classifiers with carefully engineered bag-of-words features. ConclusionAs long as the amount of training documents is not extremely few, fine-tuning a pretrained BERT model is a highly effective approach to health NLP tasks like disease classification. However, in extreme cases where each class has only one or two training documents and no more will be available, simple linear models using bag-of-words features shall be considered.more » « less
-
null (Ed.)Hierarchical multi-label text classification (HMTC) aims to tag each document with a set of classes from a class hierarchy. Most existing HMTC methods train classifiers using massive human-labeled documents, which are often too costly to obtain in real-world applications. In this paper, we explore to conduct HMTC based on only class surface names as supervision signals. We observe that to perform HMTC, human experts typically first pinpoint a few most essential classes for the document as its “core classes”, and then check core classes’ ancestor classes to ensure the coverage. To mimic human experts, we propose a novel HMTC framework, named TaxoClass. Specifically, TaxoClass (1) calculates document-class similarities using a textual entailment model, (2) identifies a document’s core classes and utilizes confident core classes to train a taxonomyenhanced classifier, and (3) generalizes the classifier via multi-label self-training. Our experiments on two challenging datasets show TaxoClass can achieve around 0.71 Example- F1 using only class names, outperforming the best previous method by 25%.more » « less
-
Multi-label classification (MLC), which assigns multiple labels to each instance, is crucial to domains from computer vision to text mining. Conventional methods for MLC require huge amounts of labeled data to capture complex dependencies between labels. However, such labeled datasets are expensive, or even impossible, to acquire. Worse yet, these pre-trained MLC models can only be used for the particular label set covered in the training data. Despite this severe limitation, few methods exist for expanding the set of labels predicted by pre-trained models. Instead, we acquire vast amounts of new labeled data and retrain a new model from scratch. Here, we propose combining the knowledge from multiple pre-trained models (teachers) to train a new student model that covers the union of the labels predicted by this set of teachers. This student supports a broader label set than any one of its teachers without using labeled data. We call this new problem knowledge amalgamation for multi-label classification. Our new method, Adaptive KNowledge Transfer (ANT), trains a student by learning from each teacher’s partial knowledge of label dependencies to infer the global dependencies between all labels across the teachers. We show that ANT succeeds in unifying label dependencies among teachers, outperforming five state-of-the-art methods on eight real-world datasets.more » « less