- Award ID(s):
- 1634328
- PAR ID:
- 10160164
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 15
- Issue:
- 29
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 5951 to 5964
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We study the effect of inter-fiber adhesion on the mechanical behavior of cross-linked ran- dom fiber networks in two dimensions. To this end, we consider networks with connectiv- ity number, z , below, at, and above the isostaticity limit of the structure without adhesion, z c . Fibers store energy in the axial and bending deformation mode and the cross-links are of freely rotating type. Adhesive forces lead to fiber bundling and to a reduction of the total volume of the network. The degree of shrinkage is determined as a function of the strength of adhesion and network parameters. The mechanical response of these struc- tures is further studied in uniaxial tension and compression. The stress-strain curves of networks without inter-fiber adhesion exhibit an initial linear regime, followed by strain stiffening in tension and strain softening and strain localization in compression. In pres- ence of adhesion, the response becomes more complex. The initial linear regime persists, with the effective modulus decreasing and increasing with increasing adhesion in cases with z > z c and z < z c , respectively. The strain range of the linear regime increases signif- icantly with increasing adhesion. Networks with z > z c subjected to tension strain-stiffen at rates that depend on the adhesion strength, but eventually enter a large strain/stress regime in which the response is independent of this parameter. Networks with z < z c are stabilized by adhesion in the unloaded state. Beyond the initial linear regime their tangent modulus gradually decreases, only to increase again at large strains. Adhesive interactions lead to similar effects in compression. Specifically, in the z > z c case, increasing the adhe- sion strength reduces the linear elastic modulus and significantly increases the range of the linear regime, delaying strain localization. This first investigation of the mechanics of cross-linked random networks with inter-fiber adhesion opens the door to the design of soft materials with novel properties.more » « less
-
We report the electrospinning of mechanically-tunable, cellulose nanocrystal (CNC)-reinforced polyurethanes (PUs). Using high-aspect ratio CNCs from tunicates, the stiffness and strength of electrospun PU/CNC mats are shown to generally increase. Furthermore, by tuning the electrospinning conditions, fibrous PU/CNC mats were created with either aligned or non-aligned fibers, as confirmed by scanning electron microscopy. PU/CNC mats having fibers aligned in the strain direction were stiffer and stronger compared to mats containing non-aligned fibers. Interestingly, fiber alignment was accompanied by an anisotropic orientation of the CNCs, as confirmed by wide-angle X-ray scattering, implying their alignment additionally benefits both stiffness and strength of fibrous PU/CNC nanocomposite mats. These findings suggest that CNC alignment could serve as an additional reinforcement mechanism in the design of stronger fibrous nanocomposite mats.more » « less
-
Electrospun polymer fibers can be used as templates for the stabilization of metallic nanostructures, but metallic species and polymer macromolecules generally exhibit weak interfacial adhesion. We have investigated the adhesion of model copper nanocubes on chemically treated aligned electrospun polyacrylonitrile (PAN) fibers based on the introduction of interfacial shear strains through mechanical deformation. The composite structures were subjected to distinct macroscopic tensile strain levels of 7%, 11%, and 14%. The fibers exhibited peculiar deformation behaviors that underscored their disparate strain transfer mechanisms depending on fiber size; nanofibers exhibited multiple necking phenomena, while microfiber deformation proceeded through localized dilatation that resulted in craze (and microcrack) formation. The copper nanocubes exhibited strong adhesion on both fibrous structures at all strain levels tested. Raman spectroscopy suggests chemisorption as the main adhesion mechanism. The interfacial adhesion energy of Cu on these treated PAN nanofibers was estimated using the Gibbs–Wulff–Kaischew shape theory giving a first order approximation of about 1 J/m2. A lower bound for the system’s adhesion strength, based on limited measurements of interfacial separation between PAN and Cu using mechanically applied strain, is 0.48 J/m2.more » « less
-
Many materials of everyday use are fibrous and their strength is important in most applications. In this work we study the dependence of the strength of random fiber networks on structural parameters such as the network density, cross-link density, fiber tortuosity, and the strength of the inter-fiber cross-links. Athermal networks of cellular and fibrous type are considered. We conclude that the network strength scales linearly with the cross-link number density and with the cross-link strength for a broad range of network parameters, and for both types of networks considered. Network strength is independent of fiber material properties and of fiber tortuosity. This information can be used to design fiber networks for specified strength and, generally, to understand the mechanical behavior of fibrous materials.more » « less
-
Abstract Critical processes including seismic faulting, reservoir compartmentalization, and borehole failure involve high‐pressure mechanical behavior and strain localization of sedimentary rocks such as sandstone. Sand is often used as a model material to study the mechanical behavior of poorly lithified sandstone. Recent studies exploring the multi‐scale mechanics of sand have characterized the brittle, low‐pressure regime of behavior; however, limited work has provided insights into the ductile, high‐pressure regime of behavior via
in‐situ measurements. Critical features of the ductile regime, including grain breakage, grain micromechanics, and volumetric strain behavior therefore remain under‐explored. Here, we use a new high‐pressure triaxial apparatus within‐situ x‐ray tomography to provide new insights into deformation banding, grain breakage, and grain micromechanics in Ottawa sand subjected to triaxial compression under confining pressures between 10 and 45 MPa. We observed strain‐hardening at pressures above 15 MPa and strain‐neutral responses at pressures below 15 MPa. Compacting shear bands and grain breakage were observed at all pressures with no significant variation due to grain size, except for minor increases in breakage in less‐rounded sands. Grain breakage emerged at stress levels lower than the assumed yield threshold and more intense breakage was associated with thinner deformation bands. Contact sliding at inter‐grain contacts demonstrated a bifurcation into a bimodal distribution, with intense sliding within deformation bands and reduced but non‐negligible sliding outside of deformation bands, suggesting that off‐band zones remain mechanically active during strain hardening.