skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Impact of O16(e,e′α)C12 measurements on the C12(α,γ)O16 astrophysical reaction rate
Award ID(s):
1812340
PAR ID:
10160215
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Physical Review C
Volume:
100
Issue:
6
ISSN:
2469-9985
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. : The C 12 ( α , γ ) O 16 reaction, determining the survival of carbon in red giants, is of interest for nuclear reaction theory and nuclear astrophysics. A specific feature of the O 16 nuclear structure is the presence of two subthreshold bound states, (6.92 MeV, 2 + ) and (7.12 MeV, 1 ), that dominate the behavior of the low-energy S factor. The strength of these subthreshold states is determined by their asymptotic normalization coefficients (ANCs), which need to be known with high accuracy. : The objective of this research is to examine how the subthreshold and ground-state ANCs impact the low-energy S factor, especially at the key astrophysical energy of 300 keV . The S factors are calculated within the framework of the R -matrix method using the code. Our total S factor takes into account the E 1 and E 2 transitions to the ground state of O 16 including the interference of the subthreshold and higher resonances, which also interfere with the corresponding direct captures, and cascade radiative captures to the ground state of O 16 through four subthreshold states: 0 2 + , 3 , 2 + , and 1 . To evaluate the impact of subthreshold ANCs on the low-energy S factor, we employ two sets of the ANCs. The first selection, which offers higher ANC values, is attained through the extrapolation process [Blokhintsev , ]. The set with low ANC values was employed by deBoer []. A detailed comparison of the S factors at the most effective astrophysical energy of 300 keV is provided, along with an investigation into how the ground-state ANC affects this S factor. : The contribution to the total E 1 and E 2 S factors from the corresponding subthreshold resonances at 300 keV are ( 71 74 ) % and ( 102 103 ) % , respectively. The correlation of the uncertainties of the subthreshold ANCs with the E 1 and E 2 S ( 300 keV ) factors is found. The E 1 transition of the subthreshold resonance 1 does not depend on the ground-state ANC but interferes constructively with a broad ( 9.585 MeV ; 1 ) resonance giving (for the present subthreshold ANC) an additional 26 % contribution to the total E 1 S ( 300 keV ) factor. Interference of the E 2 transition through the subthreshold resonance 2 + with direct capture is almost negligible for small ground-state ANC of 58 fm 1 / 2 . However, its interference with direct capture for higher ground-state ANC of 337 fm 1 / 2 is significant and destructive, contributing 27 % . The low-energy S E 2 ( 300 keV ) factor experiences a smaller increase when both subthfreshold and the ground-state ANCs rise together due to their anticorrelation, compared to when only the subthreshold ANCs increase. Published by the American Physical Society2024 
    more » « less