skip to main content


Title: Final results for the neutron β -asymmetry parameter A 0 from the UCNA experiment
The UCNA experiment was designed to measure the neutron β-asymmetry parameter A 0 using polarized ultracold neutrons (UCN). UCN produced via downscattering in solid deuterium were polarized via transport through a 7 T magnetic field, and then directed to a 1 T solenoidal electron spectrometer, where the decay electrons were detected in electron detector packages located on the two ends of the spectrometer. A value for A 0 was then extracted from the asymmetry in the numbers of counts in the two detector packages. We summarize all of the results from the UCNA experiment, obtained during run periods in 2007, 2008–2009, 2010, and 2011–2013, which ultimately culminated in a 0.67% precision result for A 0 .  more » « less
Award ID(s):
1812340
NSF-PAR ID:
10160218
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
219
ISSN:
2100-014X
Page Range / eLocation ID:
04004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Airborne Infrared Spectrometer (AIR-Spec) offers an unprecedented opportunity to explore the near-infrared (NIR) wavelength range. It has been flown at two total solar eclipses, in 2017 and 2019. The wavelength range of the much-improved instrument on the second flight (2019 July 2) was shifted to cover two density-sensitive lines from Sxi. In this paper we study detailed diagnostics for temperature, electron density, and elemental abundances by comparing results from AIR-Spec slit positions above the east and west limbs with those from Hinode/EIS, the PolarCam detector, and SDO/AIA. We find very good agreement in the electron densities obtained from the EIS EUV line ratios, those from the NIR Sxiratio, and those obtained from the polarized brightness PolarCam measurements. Electron densities ranged from logNe[cm−3] = 8.4 near the limb to 7.2 atR0= 1.3. EIS spectra indicate that the temperature distribution above the west limb is near isothermal at around 1.3 MK, while that on the east has an additional higher-Tcomponent. The AIR-Spec radiances in Sixand Sxi, as well as the AIA data in the 171, 193, and 211 Å bands, are consistent with the EIS results. EIS and AIR-Spec data indicate that the sulfur abundance (relative to silicon) is photospheric in both regions, confirming our previous results of the 2017 eclipse. The AIA data also indicate that the absolute iron abundance is photospheric. Our analysis confirms the importance of the diagnostic potential of the NIR wavelength range and that this important wavelength range can be used reliably and independently to determine coronal plasma parameters.

     
    more » « less
  2. Abstract The CEBAF Large Acceptance Spectrometer for operation at 12 GeV beam energy (CLAS12) in Hall B at Jefferson Laboratory is used to study electro-induced nuclear and hadronic reactions. This spectrometer provides efficient detection of charged and neutral particles over a large fraction of the full solid angle. CLAS12 has been part of the energy-doubling project of Jefferson Lab’s Continuous Electron Beam Accelerator Facility, funded by the United States Department of Energy. An international collaboration of 48 institutions contributed to the design and construction of detector hardware, developed the software packages for the simulation of complex event patterns, and commissioned the detector systems. CLAS12 is based on a dual-magnet system with a superconducting torus magnet that provides a largely azimuthal field distribution that covers the forward polar angle range up to 35 , and a solenoid magnet and detector covering the polar angles from 35° to 125° with full azimuthal coverage. Trajectory reconstruction in the forward direction using drift chambers and in the central direction using a vertex tracker results in momentum resolutions of 1% and 3%, respectively. Cherenkov counters, time-of-flight scintillators, and electromagnetic calorimeters provide good particle identification. Fast triggering and high data-acquisition rates allow operation at a luminosity of cm−2s−1. These capabilities are being used in a broad program to study the structure and interactions of nucleons, nuclei, and mesons, using polarized and unpolarized electron beams and targets for beam energies up to 11 GeV. This paper gives a general description of the design, construction, and performance of CLAS12. 
    more » « less
  3. Abstract

    A search for supersymmetry involving the pair production of gluinos decaying via off-shell third-generation squarks into the lightest neutralino$$(\tilde{\chi }^0_1)$$(χ~10)is reported. It exploits LHC proton–proton collision data at a centre-of-mass energy$$\sqrt{s} = 13$$s=13TeV with an integrated luminosity of 139 fb$$^{-1}$$-1collected with the ATLAS detector from 2015 to 2018. The search uses events containing large missing transverse momentum, up to one electron or muon, and several energetic jets, at least three of which must be identified as containingb-hadrons. Both a simple kinematic event selection and an event selection based upon a deep neural-network are used. No significant excess above the predicted background is found. In simplified models involving the pair production of gluinos that decay via off-shell top (bottom) squarks, gluino masses less than 2.44 TeV (2.35 TeV) are excluded at 95% CL for a massless$$\tilde{\chi }^0_1.$$χ~10.Limits are also set on the gluino mass in models with variable branching ratios for gluino decays to$$b\bar{b}\tilde{\chi }^0_1,$$bb¯χ~10,$$t\bar{t}\tilde{\chi }^0_1$$tt¯χ~10and$$t\bar{b}\tilde{\chi }^-_1/\bar{t}b\tilde{\chi }^+_1.$$tb¯χ~1-/t¯bχ~1+.

     
    more » « less
  4. The spectroscopic identification of Bi 4 has been very elusive. Two constitutional Bi 4 isomers of T d and C 2v symmetry are investigated and each is found to be a local energetic minimum. The optimized geometries and vibrational frequencies of these two isomers are obtained at the CCSD(T)/cc-pVQZ-PP level of theory, utilizing the Stoll, Metz, and Dolg 60-electron effective core potential. The fundamental frequencies of the T d isomer are obtained at the same level of theory. The focal point analysis method, from a maximum basis set of cc-pV5Z-PP, and proceeding to a maximum correlation method of CCSDTQ, was employed to determine the dissociation energy of Bi 4 ( T d ) into two Bi 2 and the adiabatic energy difference between the C 2v and T d isomers of Bi 4 . These quantities are predicted to be +65 kcal mol −1 and +39 kcal mol −1 , respectively. Two electron vertical excitation energies between the T d and C 2v electronic configurations are computed to be 156 kcal mol −1 for the T d isomer and 9 kcal mol −1 for the C 2v isomer. The most probable approach to laboratory spectroscopic identification of Bi 4 is via an infrared spectrum. The predicted fundamentals (cm −1 ) with harmonic IR intensities in parentheses (km mol −1 ) are 94(0), 123(0.23), and 167(0) for the T d isomer. The moderate IR intensity for the only allowed fundamental may explain why Bi 4 has yet to be observed. Through natural bond orbital analysis, the C 2v isomer of Bi 4 was discovered to exhibit “long-bonding” between the furthest apart ‘wing’ atoms. This long-bonding is postulated to be facilitated by the σ-bonding orbital between the ‘spine’ atoms of the C 2v isomer. 
    more » « less
  5. null (Ed.)
    Coincidence ion pair production (cipp) spectra of F 2 were recorded on the DELICIOUS III coincidence spectrometer in the one-photon excitation region of 125 975–126 210 cm −1 . The F + + F − signal shows a rotational band head structure, corresponding to F 2 Rydberg states crossing over to the ion pair production surface. Spectral simulation and quantum defect analysis allowed the characterization of five new molecular Rydberg states (F 2 **): one Π and four Σ states. The lowest-energy Rydberg state spectrum observed ( T 0 = 125 999 cm −1 ) lacked some of the predicted rotational structure, which allowed an accurate determination of the ion pair production threshold of 15.6229 4 ± 0.0004 3 eV. Using the well-known atomic fluorine ionization energy and electron affinity, this number leads to a ground state F–F dissociation energy of 1.6012 9 ± 0.0004 4 eV. Photoelectron photoion coincidence (PEPICO) experiments were also carried out on F 2 and the dissociative photoionization threshold to F + + F was determined as 19.0242 ± 0.0006 eV. Using the atomic fluorine ionization energy, this can be converted to an F 2 dissociation energy of 1.6013 2 ± 0.0006 2 eV, further confirming the cipp-derived value above. Because the two experiments were independently energy-calibrated, they can be averaged to 1.6013 0 ± 0.0003 6 eV and this value can be used to derive the fluorine atom's 0 K heat of formation as 77.25 1 ± 0.01 7 kJ mol −1 . This latter is in excellent agreement with the latest Active Thermochemical Table (ATcT) value but improves its accuracy by almost a factor of three. 
    more » « less