Vehicle cybersecurity is a serious concern, as modern vehicles are vulnerable to cyberattacks. How drivers respond to situations induced by vehicle cyberattacks is safety critical. This paper sought to understand the effect of human drivers’ risky driving style on response behavior to unexpected vehicle cyberattacks. A driving simulator study was conducted wherein 32 participants experienced a series of simulated drives in which unexpected events caused by vehicle cyberattacks were presented. Participants’ response behavior was assessed by their change in velocity after the cybersecurity events occurred, their post-event acceleration, as well as time to first reaction. Risky driving style was portrayed by scores on the Driver Behavior Questionnaire (DBQ) and the Brief Sensation Seeking Scale (BSSS). Half of the participants also received training regarding vehicle cybersecurity before the experiment. Results suggest that when encountering certain cyberattack-induced unexpected events, whether one received training, driving scenario, participants’ gender, DBQ-Violation scores, together with their sensation seeking measured by disinhibition, had a significant impact on their response behavior. Although both the DBQ and sensation seeking have been constantly reported to be linked with risky and aberrant driving behavior, we found that drivers with higher sensation seeking tended to respond to unexpected driving situations induced by vehicle cyberattacks in a less risky and potentially safer manner. This study incorporates not only human factors into the safety research of vehicle cybersecurity, but also builds direct connections between drivers’ risky driving style, which may come from their inherent risk-taking tendency, to response behavior to vehicle cyberattacks.
more »
« less
A Simulator Study on Drivers’ Response and Perception Towards Vehicle Cyberattacks
The introduction of advanced technologies has made driving a more automated activity. However, most vehicles are not designed with cybersecurity considerations and hence, they are susceptible to cyberattacks. When such incidents happen, it is critical for drivers to respond properly. The goal of this study was to observe drivers’ responses to unexpected vehicle cyberattacks while driving in a simulated environment and to gain deeper insights into their perceptions of vehicle cybersecurity. Ten participants completed the experiment and the results showed that they perceived and responded differently to each vehicle cyberattack. Participants correctly identified the cybersecurity issue and took according action when the issue caused a noticeable visual and auditory response. Participants preferred to be clearly informed about what happened and what to do through a combination of visual, tactile, and auditory warnings. The lack of knowledge of vehicle cybersecurity was obvious among participants.
more »
« less
- Award ID(s):
- 1755795
- PAR ID:
- 10160586
- Date Published:
- Journal Name:
- Proceedings of the Human Factors and Ergonomics Society Annual Meeting
- Volume:
- 63
- Issue:
- 1
- ISSN:
- 2169-5067
- Page Range / eLocation ID:
- 1498 to 1502
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The rapid growth of autonomous vehicles is expected to improve roadway safety. However, certain levels of vehicle automation will still require drivers to ‘takeover’ during abnormal situations, which may lead to breakdowns in driver-vehicle interactions. To date, there is no agreement on how to best support drivers in accomplishing a takeover task. Therefore, the goal of this study was to investigate the effectiveness of multimodal alerts as a feasible approach. In particular, we examined the effects of uni-, bi-, and trimodal combinations of visual, auditory, and tactile cues on response times to takeover alerts. Sixteen participants were asked to detect 7 multimodal signals (i.e., visual, auditory, tactile, visual-auditory, visual-tactile, auditory-tactile, and visual-auditory-tactile) while driving under two conditions: with SAE Level 3 automation only or with SAE Level 3 automation in addition to performing a road sign detection task. Performance on the signal and road sign detection tasks, pupil size, and perceived workload were measured. Findings indicate that trimodal combinations result in the shortest response time. Also, response times were longer and perceived workload was higher when participants were engaged in a secondary task. Findings may contribute to the development of theory regarding the design of takeover request alert systems within (semi) autonomous vehicles.more » « less
-
Modern vehicles are embedded with numerous electronic components, making them more advanced and automated, while also making them vulnerable to cyberattacks. This study investigated how drivers respond to unexpected, cyber-attack-induced situations through a driving simulator study. It also examined differences in driver responses if they were trained or received warning messages on how to mitigate the effect of a vehicle cyberattack. The findings suggest that drivers' responses to cyberattacks vary based on the severity of the event. Those who receive training are much more likely to drive cautiously when the vehicle behaves unexpectedly and those who receive warning messages are likely to view them, but not necessarily take action. These results have far reaching implications into the utility of training programs in improving driver behavior and leave future work in terms of optimizing warning message systems.more » « less
-
ObjectiveThis study examined the impact of monitoring instructions when using an automated driving system (ADS) and road obstructions on post take-over performance in near-miss scenarios. BackgroundPast research indicates partial ADS reduces the driver’s situation awareness and degrades post take-over performance. Connected vehicle technology may alert drivers to impending hazards in time to safely avoid near-miss events. MethodForty-eight licensed drivers using ADS were randomly assigned to either the active driving or passive driving condition. Participants navigated eight scenarios with or without a visual obstruction in a distributed driving simulator. The experimenter drove the other simulated vehicle to manually cause near-miss events. Participants’ mean longitudinal velocity, standard deviation of longitudinal velocity, and mean longitudinal acceleration were measured. ResultsParticipants in passive ADS group showed greater, and more variable, deceleration rates than those in the active ADS group. Despite a reliable audiovisual warning, participants failed to slow down in the red-light running scenario when the conflict vehicle was occluded. Participant’s trust in the automated driving system did not vary between the beginning and end of the experiment. ConclusionDrivers interacting with ADS in a passive manner may continue to show increased and more variable deceleration rates in near-miss scenarios even with reliable connected vehicle technology. Future research may focus on interactive effects of automated and connected driving technologies on drivers’ ability to anticipate and safely navigate near-miss scenarios. ApplicationDesigners of automated and connected vehicle technologies may consider different timing and types of cues to inform the drivers of imminent hazard in high-risk scenarios for near-miss events.more » « less
-
Adults aged 65 years and older are the fastest growing age group worldwide. Future autonomous vehicles may help to support the mobility of older individuals; however, these cars will not be widely available for several decades and current semi-autonomous vehicles often require manual takeover in unusual driving conditions. In these situations, the vehicle issues a takeover request in any uni-, bi- or trimodal combination of visual, auditory, or tactile alerts to signify the need for manual intervention. However, to date, it is not clear whether age-related differences exist in the perceived ease of detecting these alerts. Also, the extent to which engagement in non-driving-related tasks affects this perception in younger and older drivers is not known. Therefore, the goal of this study was to examine the effects of age on the ease of perceiving takeover requests in different sensory channels and on attention allocation during conditional driving automation. Twenty-four younger and 24 older adults drove a simulated SAE Level 3 vehicle under three conditions: baseline, while performing a non-driving-related task, and while engaged in a driving-related task, and were asked to rate the ease of detecting uni-, bi- or trimodal combinations of visual, auditory, or tactile signals. Both age groups found the trimodal alert to be the easiest to detect. Also, older adults focused more on the road than the secondary task compared to younger drivers. Findings may inform the development of next-generation of autonomous vehicle systems to be safe for a wide range of age groups.more » « less
An official website of the United States government

