skip to main content


Title: Light scattering studies of the sol-to-gel transition in particulate systems
We present investigations of the kinetics of the colloidal sol-to-gel transition by combining small angle static light scattering (SASLS) and dynamic light scattering (DLS) techniques. Dilute monomer volume fractions were used to allow for a full investigation of the gelation to obtain all possible kinetic regimes. Our data verify the predictions of a kinetic theory, the ideal gel point (IGP) theory, where three regimes of kinetics are expected. We observe the first regime, the well-known cluster-dilute regime, with a kinetic exponent of z = 1. Followed by a cluster-dense regime with an enhanced kinetics and z ’ 2. Finally, a gelation regime is observed where the aggregate growth slows and ceases to grow at the IGP predicted size, Rg,G. These results quantitatively verify the IGP theory. We conclude that kinetic description provides a complete theory of the gelation process from sol to gel.  more » « less
Award ID(s):
1649783
NSF-PAR ID:
10160898
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of colloid and interface science
Volume:
556
ISSN:
0021-9797
Page Range / eLocation ID:
577–583
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A comprehensive theory encompassing the kinetics of the sol-to-gel transition is yet to be formulated due to break-down of the mean-field Smoluchowski Equation. Using high temporal-resolution Monte Carlo simulation of irreversible aggregation systems, we show that this transition has three distinct regimes with kinetic exponent z 2 1 ½ ; 2Þ corresponding to aggregation of sol clusters proceeding to the ideal gel point (IGP); z 2 ½2; 5:7Þ for gelation of sol clusters beyond IGP; and z 2 ½2; 3:5Þ for a hitherto unidentified regime involving aggregation of gels when monomer-dense. We further establish universal power-law scaling relationships that connect the kinetics of these three regimes. Improved parameterizations are performed on the characteristic timescale parameters that define each regime. 
    more » « less
  2. Gov, Nir (Ed.)
    Actin networks are essential for living cells to move, reproduce, and sense their environments. The dynamic and rheological behavior of actin networks is modulated by actin-binding proteins such as α-actinin, Arp2/3, and myosin. There is experimental evidence that actin-binding proteins modulate the cooperation of myosin motors by connecting the actin network. In this work, we present an analytical mean field model, using the Flory-Stockmayer theory of gelation, to understand how different actin-binding proteins change the connectivity of the actin filaments as the networks are formed. We follow the kinetics of the networks and estimate the concentrations of actin-binding proteins that are needed to reach connectivity percolation as well as to reach rigidity percolation. We find that Arp2/3 increases the actomyosin connectivity in the network in a non-monotonic way. We also describe how changing the connectivity of actomyosin networks modulates the ability of motors to exert forces, leading to three possible phases of the networks with distinctive dynamical characteristics: a sol phase, a gel phase, and an active phase. Thus, changes in the concentration and activity of actin-binding proteins in cells lead to a phase transition of the actin network, allowing the cells to perform active contraction and change their rheological properties. 
    more » « less
  3. Silica-based aerogels are a promising low-cost solution for improving the insulation efficiency of single-pane windows and reducing the energy consumption required for space heating and cooling. Two key material properties required are high porosity and small pore sizes, which lead to low thermal conductivity and high optical transparency, respectively. However, porosity and pore size are generally directly linked, where high porosity materials also have large pore sizes. This is unfavorable as large pores scatter light, resulting in reduced transmittance in the visible regime. In this work, we utilized preformed silica colloids to explore methods for reducing pore size while maintaining high porosity. The use of preformed colloids allows us to isolate the effect of solution conditions on porous gel network formation by eliminating simultaneous nanoparticle growth and aggregation found when using typical sol–gel molecular-based silica precursors. Specifically, we used in situ synchrotron-based small-angle x-ray scattering during gel formation to better understand how pH, concentration, and colloid size affect particle aggregation and pore structure. Ex situ characterization of dried gels demonstrates that peak pore widths can be reduced from 15 to 13 nm, accompanied by a narrowing of the overall pore size distribution, while maintaining porosities of 70%–80%. Optical transparency is found to increase with decreasing pore sizes while low thermal conductivities ranging from 95 +/− 13 mW/m K are maintained. Mechanical performance was found to depend primarily on effective density and did not show a significant dependence on solution conditions. Overall, our results provide insights into methods to preserve high porosity in nanoparticle-based aerogels while improving optical transparency.

     
    more » « less
  4. Single particle tracking (SPT) of PEG grafted nanoparticles (NPs) was used to examine the gelation of tetra poly(ethylene glycol) (TPEG) succinimidyl glutarate (TPEG-SG) and amine (TPEG-A) terminated 4-armed stars. As concentration was decreased from 40 to 20 mg mL −1 , the onset of network formation, t gel , determined from rheometry increased from less than 2 to 44 minutes. NP mobility increased as polymer concentration decreased in the sol state, but remained diffusive at times past the t gel determined from rheometry. Once in the gel state, NP mobility decreased, became sub-diffusive, and eventually localized in all concentrations. The NP displacement distributions were investigated to gain insight into the nanoscale environment. In these relatively homogeneous gels, the onset of sub-diffusivity was marked by a rapid increase in dynamic heterogeneity followed by a decrease consistent with a homogeneous network. We propose a gelation mechanism in which clusters initially form a heterogeneous structure which fills in to form a fully gelled relatively homogenous network. This work aims to examine the kinetics of TPEG gelation and the homogeneity of these novel gels on the nanometer scale, which will aid in the implementation of these gels in biomedical or filtration applications. 
    more » « less
  5. null (Ed.)
    Stimuli-responsive supramolecular gels and metallogels have been widely explored in the past decade, but the fabrication of metallogels with reversible photoresponsive properties remains largely unexplored. In this study, we report the construction of photoresponsive hybrid zinc-based metallohydrogel systems coassembled from an imidazole functionalized phenylalanine derivative gelator (ImF) and carboxylic acid functionalized arylazopyrazole (AzoPz) molecular photoswitches in the presence of Zn 2+ ions. Unlike traditional covalent conjugation, noncovalent introduction of small molecular switches into the gel matrix provides a convenient route to generate photoresponsive functional materials with tunable properties and expands the scope of optically controlled molecular self-assemblies. It has been found that the carboxylic acid functionalized AzoPz derivatives alone or mixed with the ImF moiety could not self-assemble to form any gels. However, in the presence of Zn 2+ ions they readily formed the coassembled hybrid metallogels in an alkaline aqueous solution with various morphologies. These results suggest that the gelation process was triggered by the Zn 2+ ions. In addition, the ImF gelator shows specific response to Zn 2+ ions only. The presence of the AzoPz moiety in the gel matrix makes the metallogel coassemblies photoresponsive and the reversible gel-to-sol phase transition was studied by UV-vis spectroscopy. The gels showed a slow reversible light-induced gel-to-sol phase transition under UV ( λ = 365 nm) and then sol-to-gel transition by green light ( λ = 530) irradiation resulting in the reformation of the original gel state. The morphology and viscoelastic properties of the fibrillar opaque metallogels have been characterized by transmission electron microscopy (TEM) and rheological measurement, respectively. 
    more » « less