We present a theoretical framework to investigate thermoreversible phase transitions within polyzwitterion systems, encompassing macrophase separations (MPS) and gelation. In addition, we explore concentration fluctuations near critical points associated with MPS, as well as tricritical and bicritical points at the intersection of MPS and gelation. By utilizing mean-field percolation theory and field theory formalism, we derive the Landau free energy in terms of polyzwitterion concentration with fixed dipole strengths and other experimental variables, such as temperatures and salt concentrations. As the temperature decreases, the dipoles can form cross-links, resulting in polyzwitterion associations. The associations can grow to a gel network and enhance the propensity for MPS, including liquid–liquid, liquid–gel, and gel–gel phase separations. Remarkably, the associations also impact critical behaviors. Using the renormalization group technique, we find that the critical exponents of the polyzwitterion concentration correlation functions significantly deviate from those in the Ising universality class due to the presence of polyzwitterion associations, leading to crossover critical behaviors.
more »
« less
Dipole Theory of Polyzwitterion Microgels and Gels
The behavior of polyzwitterions, constituted by dipole-like zwitterionic monomers, is significantly different from that of uniformly charged polyelectrolytes. The origin of this difference lies in the intrinsic capacity of polyzwitterions to self-associate intramolecularly and associate with interpenetrating chains driven by dominant dipolar interactions. Earlier attempts to treat polyzwitterions implicitly assume that the dipoles of zwitterion monomers are randomly oriented. At ambient temperatures, the dipolar zwitterion monomers can readily align with each other generating quadrupoles and other multipoles and thus generating heterogeneous structures even in homogeneous solutions. Towards an attempt to understand the role of such dipolar associations, we present a mean field theory of solutions of polyzwitterions. Generally, we delineate a high-temperature regime where the zwitterion dipoles are randomly oriented from a low-temperature regime where quadrupole formation is significantly prevalent. We present closed-form formulas for: (1) Coil-globule transition in the low-temperature regime, the anti-polyelectrolyte effect of chain expansion upon addition of low molar mass salt, and chain relaxation times in dilute solutions. (2) Spontaneous formation of a mesomorphic state at the borderline between the high-temperature and low-temperature regimes and its characteristics. A universal law is presented for the radius of gyration of the microgel, as a proportionality to one-sixth power of the polymer concentration. (3) Swelling equilibrium of chemically cross-linked polyzwitterion gels in both the high temperature and low-temperature regimes. Addressing the hierarchical internal dynamics of polyzwitterion gels, we present a general stretched exponential law for the time-correlation function of gel displacement vector, that can be measured in dynamic light scattering experiments. The present theory is of direct experimental relevance and additional theoretical developments to all polyzwitterion systems, and generally to biological macromolecular systems such as intrinsically disordered proteins.
more »
« less
- Award ID(s):
- 2309539
- PAR ID:
- 10544365
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Gels
- Volume:
- 10
- Issue:
- 6
- ISSN:
- 2310-2861
- Page Range / eLocation ID:
- 393
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The self-assembly of colloidal magnetic Janus particles with a laterally displaced (or shifted), permanent dipole in a quasi-two-dimensional system is studied using Brownian dynamics simulations. The rate of formation of clusters and their structures are quantified for several values of dipolar shift from the particle center, which is nondimensionalized using the particle's radius so that it takes values ranging from 0 to 1, and examined under different magnetic interaction strengths relative to Brownian motion. For dipolar shifts close to 0, chain-like structures are formed, which grow at long times following a power law, while particles of shift higher than 0.2 generally aggregate in ring-like clusters that experience limited growth. In the case of shifts between 0.4 and 0.5, the particles tend to aggregate in clusters of 3 to 6, while for all shifts higher than 0.6 clusters rarely contain more than 3 particles due to the antiparallel dipole orientations that are most stable at those shifts. The strength of the magnetic interactions hastens the rate at which clusters are formed; however, the effect it has on cluster size is lessened by increases in the shift of the dipoles. These results contribute to better understand the dynamics of magnetic Janus particles and can help the synthesis of functionalized materials for specific applications such as drug delivery.more » « less
-
A comprehensive theory encompassing the kinetics of the sol-to-gel transition is yet to be formulated due to break-down of the mean-field Smoluchowski Equation. Using high temporal-resolution Monte Carlo simulation of irreversible aggregation systems, we show that this transition has three distinct regimes with kinetic exponent z 2 1 ½ ; 2Þ corresponding to aggregation of sol clusters proceeding to the ideal gel point (IGP); z 2 ½2; 5:7Þ for gelation of sol clusters beyond IGP; and z 2 ½2; 3:5Þ for a hitherto unidentified regime involving aggregation of gels when monomer-dense. We further establish universal power-law scaling relationships that connect the kinetics of these three regimes. Improved parameterizations are performed on the characteristic timescale parameters that define each regime.more » « less
-
The eukaryotic cell's cytoskeleton is a prototypical example of an active material: objects embedded within it are driven by molecular motors acting on the cytoskeleton, leading to anomalous diffusive behavior. Experiments tracking the behavior of cell-attached objects have observed anomalous diffusion with a distribution of displacements that is non-Gaussian, with heavy tails. This has been attributed to “cytoquakes” or other spatially extended collective effects. We show, using simulations and analytical theory, that a simple continuum active gel model driven by fluctuating force dipoles naturally creates heavy power-law tails in cytoskeletal displacements. We predict that this power law exponent should depend on the geometry and dimensionality of where force dipoles are distributed through the cell; we find qualitatively different results for force dipoles in a 3D cytoskeleton and a quasi-two-dimensional cortex. We then discuss potential applications of this model both in cells and in synthetic active gels.more » « less
-
Abstract In 2011 Blanchet and Marsat suggested a fully relativistic version of Milgrom's modified Newtonian dynamics in which the dynamical degrees of freedom consist of the spacetime metric and a foliation of spacetime, the khronon field. This theory is simpler than the alternative relativistic formulations. We show that the theory has a consistent nonrelativistic or slow-motion limit. Blanchet and Marsat showed that in the slow motion limit, the theory reproduces stationary solutions of modified Newtonian dynamics. We show that these solutions are stable to khronon perturbations in the low acceleration regime, for the cases of spherical, cylindrical, and planar symmetry. For nonstationary systems in the low acceleration regime, we show that the khronon field generally gives an order unity correction to the modified Newtonian dynamics. In particular, there will be an order unity correction to the MOND version of Kepler's third law, potentially relevant to ongoing efforts to test MOND using GAIA observations of wide binaries.more » « less
An official website of the United States government

