skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Symmetries and monotones in Markovian quantum dynamics
What can one infer about the dynamical evolution of quantum systems just by symmetry considerations? For Markovian dynamics in finite dimensions, we present a simple construction that assigns to each symmetry of the generator a family of scalar functions over quantum states that are monotonic under the time evolution. The aforementioned monotones can be utilized to identify states that are non-reachable from an initial state by the time evolution and include all constraints imposed by conserved quantities, providing a generalization of Noether's theorem for this class of dynamics. As a special case, the generator itself can be considered a symmetry, resulting in non-trivial constraints over the time evolution, even if all conserved quantities trivialize. The construction utilizes tools from quantum information-geometry, mainly the theory of monotone Riemannian metrics. We analyze the prototypical cases of dephasing and Davies generators.  more » « less
Award ID(s):
1819189
PAR ID:
10161143
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Quantum
Volume:
4
ISSN:
2521-327X
Page Range / eLocation ID:
261
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Continuous symmetries lead to universal slow relaxation of correlation functions in quantum many-body systems. In this work, we study how local symmetry-breaking impurities affect the dynamics of these correlation functions using Brownian quantum circuits, which we expect to apply to generic non-integrable systems with the same symmetries. While explicitly breaking the symmetry is generally expected to lead to eventual restoration of full ergodicity, we find that approximately conserved quantities that survive under such circumstances can still induce slow relaxation. This can be understood using a super-Hamiltonian formulation, where low-lying excitations determine the late-time dynamics and exact ground states correspond to conserved quantities. We show that in one dimension, symmetry-breaking impurities modify diffusive and subdiffusive behaviors associated with U(1) and dipole conservation at late-times, e.g., by increasing power-law decay exponents of the decay of autocorrelation functions. This stems from the fact that for these symmetries, impurities are relevant in the renormalization group sense, e.g., bulk impurities effectively disconnect the system, completely modifying both temporal and spatial correlations. On the other hand, for an impurity that disrupts strong Hilbert space fragmentation, the super-Hamiltonian only acquires an exponentially small gap, leading to prethermal plateaus in autocorrelation functions which extend for times that scale exponentially with the distance to the impurity. Overall, our approach systematically characterizes how symmetry-breaking impurities affect relaxation dynamics in symmetric systems. 
    more » « less
  2. null (Ed.)
    We present a systematic construction of probes into the dynamics of isospectral ensembles of Hamiltonians by the notion of Isospectral twirling, expanding the scopes and methods of ref. [1]. The relevant ensembles of Hamiltonians are those defined by salient spectral probability distributions. The Gaussian Unitary Ensembles (GUE) describes a class of quantum chaotic Hamiltonians, while spectra corresponding to the Poisson and Gaussian Diagonal Ensemble (GDE) describe non chaotic, integrable dynamics. We compute the Isospectral twirling of several classes of important quantities in the analysis of quantum many-body systems: Frame potentials, Loschmidt Echos, OTOCs, Entanglement, Tripartite mutual information, coherence, distance to equilibrium states, work in quantum batteries and extension to CP-maps. Moreover, we perform averages in these ensembles by random matrix theory and show how these quantities clearly separate chaotic quantum dynamics from non chaotic ones. 
    more » « less
  3. Quantum many-body scarring is a paradigm of weak ergodicity breaking arising due to the presence of special nonthermal many-body eigenstates that possess low entanglement entropy, are equally spaced in energy, and concentrate in certain parts of the Hilbert space. Though scars have been shown to be intimately connected to gauge theories, their stability in such experimentally relevant models is still an open question, and it is generally considered that they exist only under fine-tuned conditions. In this work, we show through Krylov-based time-evolution methods how quantum many-body scars can be made robust in the presence of experimental errors through utilizing terms linear in the gauge-symmetry generator or a simplified pseudogenerator in U ( 1 ) and Z 2 lattice gauge theories. Our findings are explained by the concept of quantum Zeno dynamics. Our experimentally feasible methods can be readily implemented in existing large-scale ultracold-atom quantum simulators and setups of Rydberg atoms with optical tweezers. 
    more » « less
  4. Symmetry is a unifying concept in physics. In quantum information and beyond, it is known that quantum states possessing symmetry are not useful for certain information-processing tasks. For example, states that commute with a Hamiltonian realizing a time evolution are not useful for timekeeping during that evolution, and bipartite states that are highly extendible are not strongly entangled and thus not useful for basic tasks like teleportation. Motivated by this perspective, this paper details several quantum algorithms that test the symmetry of quantum states and channels. For the case of testing Bose symmetry of a state, we show that there is a simple and efficient quantum algorithm, while the tests for other kinds of symmetry rely on the aid of a quantum prover. We prove that the acceptance probability of each algorithm is equal to the maximum symmetric fidelity of the state being tested, thus giving a firm operational meaning to these latter resource quantifiers. Special cases of the algorithms test for incoherence or separability of quantum states. We evaluate the performance of these algorithms on choice examples by using the variational approach to quantum algorithms, replacing the quantum prover with a parameterized circuit. We demonstrate this approach for numerous examples using the IBM quantum noiseless and noisy simulators, and we observe that the algorithms perform well in the noiseless case and exhibit noise resilience in the noisy case. We also show that the maximum symmetric fidelities can be calculated by semi-definite programs, which is useful for benchmarking the performance of these algorithms for sufficiently small examples. Finally, we establish various generalizations of the resource theory of asymmetry, with the upshot being that the acceptance probabilities of the algorithms are resource monotones and thus well motivated from the resource-theoretic perspective. 
    more » « less
  5. Tight bosonic analogs of free-fermionic symmetry-protected topological phases, and their associated edgelocalized excitations, have long evaded the grasp of condensed-matter and AMO physics. In this paper, building on our initial exploration [Phys. Rev. Lett. 127, 245701 (2021)], we identify a broad class of quadratic bosonic systems subject to Markovian dissipation that realize tight bosonic analogs of the Majorana and Dirac edge modes characteristic of topological superconductors and insulators, respectively. To this end, we establish a general framework for topological metastability for these systems, by leveraging pseudospectral theory as the appropriate mathematical tool for capturing the nonnormality of the Lindbladian generator. The resulting dynamical paradigm, which is characterized by both a sharp separation between transient and asymptotic dynamics and a nontrivial topological invariant, is shown to host edge-localized modes, which we dub Majorana and Dirac bosons. Generically, such modes consist of one conserved mode and a canonically conjugate generator of an approximate phase-space translation symmetry of the dynamics. The general theory is exemplified through several representative models exhibiting the full range of exotic boundary physics that topologically metastable systems can engender. In particular, we explore the extent to which Noether’s theorem is violated in this dissipative setting and the way in which certain symmetries can nontrivially modify the edge modes. Notably, we also demonstrate the possibility of anomalous parity dynamics for a bosonic cat state prepared in a topologically metastable system, whereby an equal distribution between even and odd parity sectors is sustained over a long transient. For both Majorana and Dirac bosons, observable multitime signatures in the form of anomalously long-lived quantum correlations and divergent zero-frequency power spectral peaks are proposed and discussed in detail. Our results point to a paradigm for symmetry-protected topological physics in free bosons, embedded deeply in the long-lived transient regimes of metastable dynamics. 
    more » « less