skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust quantum many-body scars in lattice gauge theories
Quantum many-body scarring is a paradigm of weak ergodicity breaking arising due to the presence of special nonthermal many-body eigenstates that possess low entanglement entropy, are equally spaced in energy, and concentrate in certain parts of the Hilbert space. Though scars have been shown to be intimately connected to gauge theories, their stability in such experimentally relevant models is still an open question, and it is generally considered that they exist only under fine-tuned conditions. In this work, we show through Krylov-based time-evolution methods how quantum many-body scars can be made robust in the presence of experimental errors through utilizing terms linear in the gauge-symmetry generator or a simplified pseudogenerator in U ( 1 ) and Z 2 lattice gauge theories. Our findings are explained by the concept of quantum Zeno dynamics. Our experimentally feasible methods can be readily implemented in existing large-scale ultracold-atom quantum simulators and setups of Rydberg atoms with optical tweezers.  more » « less
Award ID(s):
2116679
PAR ID:
10429848
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Quantum
Volume:
7
ISSN:
2521-327X
Page Range / eLocation ID:
1004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The one-dimensional quantum breakdown model, which features spatially asymmetric fermionic interactions simulating the electrical breakdown phenomenon, exhibits an exponential U(1) symmetry and a variety of dynamical phases including many-body localization and quantum chaos with quantum scar states. We investigate the minimal quantum breakdown model with the minimal number of on-site fermion orbitals required for the interaction and identify a large number of local conserved charges in the model. We then reveal a mapping between the minimal quantum breakdown model in certain charge sectors and a quantum link model which simulates theU(1) lattice gauge theory and show that the local conserved charges map to the gauge symmetry generators. A special charge sector of the model further maps to the PXP model, which shows quantum many-body scars. This mapping unveils the rich dynamics in different Krylov subspaces characterized by different gauge configurations in the quantum breakdown model. 
    more » « less
  2. Quantum many-body systems involving bosonic modes or gauge fields have infinite-dimensional local Hilbert spaces which must be truncated to perform simulations of real-time dynamics on classical or quantum computers. To analyze the truncation error, we develop methods for bounding the rate of growth of local quantum numbers such as the occupation number of a mode at a lattice site, or the electric field at a lattice link. Our approach applies to various models of bosons interacting with spins or fermions, and also to both abelian and non-abelian gauge theories. We show that if states in these models are truncated by imposing an upper limit Λ on each local quantum number, and if the initial state has low local quantum numbers, then an error at most ϵ can be achieved by choosing Λ to scale polylogarithmically with ϵ − 1 , an exponential improvement over previous bounds based on energy conservation. For the Hubbard-Holstein model, we numerically compute a bound on Λ that achieves accuracy ϵ , obtaining significantly improved estimates in various parameter regimes. We also establish a criterion for truncating the Hamiltonian with a provable guarantee on the accuracy of time evolution. Building on that result, we formulate quantum algorithms for dynamical simulation of lattice gauge theories and of models with bosonic modes; the gate complexity depends almost linearly on spacetime volume in the former case, and almost quadratically on time in the latter case. We establish a lower bound showing that there are systems involving bosons for which this quadratic scaling with time cannot be improved. By applying our result on the truncation error in time evolution, we also prove that spectrally isolated energy eigenstates can be approximated with accuracy ϵ by truncating local quantum numbers at Λ = polylog ( ϵ − 1 ) . 
    more » « less
  3. Abstract Three-dimensional (3D) strongly correlated many-body systems, especially their dynamics across quantum phase transitions, are prohibitively difficult to be numerically simulated. We experimentally demonstrate that such complex many-body dynamics can be efficiently studied in a 3D spinor Bose–Hubbard model quantum simulator, consisting of antiferromagnetic spinor Bose–Einstein condensates confined in cubic optical lattices. We find dynamics and scaling effects beyond the scope of existing theories at superfluid–insulator quantum phase transitions, and highlight spin populations as a good observable to probe the quantum critical dynamics. Our data indicate that the scaling exponents are independent of the nature of the quantum phase transitions. We also conduct numerical simulations in lower dimensions using time-dependent Gutzwiller approximations, which qualitatively describe our observations. 
    more » « less
  4. From the standard model of particle physics to strongly correlated electrons, various physical settings are formulated in terms of matter coupled to gauge fields. Quantum simulations based on ultracold atoms in optical lattices provide a promising avenue to study these complex systems and unravel the underlying many-body physics. Here, we demonstrate how quantized dynamical gauge fields can be created in mixtures of ultracold atoms in optical lattices, using a combination of coherent lattice modulation with strong interactions. Specifically, we propose implementation of ℤ 2 lattice gauge theories coupled to matter, reminiscent of theories previously introduced in high-temperature superconductivity. We discuss a range of settings from zero-dimensional toy models to ladders featuring transitions in the gauge sector to extended two-dimensional systems. Mastering lattice gauge theories in optical lattices constitutes a new route toward the realization of strongly correlated systems, with properties dictated by an interplay of dynamical matter and gauge fields. 
    more » « less
  5. Symmetry algebras of quantum many-body systems with locality can be understood using commutant algebras, which are defined as algebras of operators that commute with a given set of local operators. In this work, we show that these symmetry algebras can be expressed as frustration-free ground states of a local superoperator, which we refer to as a “super-Hamiltonian.” We demonstrate this for conventional symmetries such as Z 2 , U ( 1 ) , and S U ( 2 ) , where the symmetry algebras map to various kinds of ferromagnetic ground states, as well as for unconventional ones that lead to weak ergodicity-breaking phenomena of Hilbert-space fragmentation (HSF) and quantum many-body scars. In addition, we show that the low-energy excitations of this super-Hamiltonian can be understood as approximate symmetries, which in turn are related to slowly relaxing hydrodynamic modes in symmetric systems. This connection is made precise by relating the super-Hamiltonian to the superoperator that governs the operator relaxation in noisy symmetric Brownian circuits and this physical interpretation also provides a novel interpretation for Mazur bounds for autocorrelation functions. We find examples of gapped (gapless) super-Hamiltonians indicating the absence (presence) of slow modes, which happens in the presence of discrete (continuous) symmetries. In the gapless cases, we recover hydrodynamic modes such as diffusion, tracer diffusion, and asymptotic scars in the presence of U ( 1 ) symmetry, HSF, and a tower of quantum scars, respectively. In all, this demonstrates the power of the commutant-algebra framework in obtaining a comprehensive understanding of exact symmetries and associated approximate symmetries and hydrodynamic modes, and their dynamical consequences in systems with locality. Published by the American Physical Society2024 
    more » « less